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Abstract—DRAM consists of multiple resources called banks
that can be accessed in parallel and independently maintain state
information. In Commercial Off-The-Shelf (COTS) multicore
platforms, banks are typically shared among all cores, even
though programs running on the cores do not share memory
space. In this situation, memory performance is highly unpre-
dictable due to contention in the shared banks.

In this paper, we propose PALLOC, a DRAM bank-aware
memory allocator which exploits the page-based virtual memory
system to allocate memory pages of each application to specific
banks. With PALLOC, we can dynamically partition banks to
avoid bank sharing among cores, thereby improving isolation
on COTS multicore platforms without requiring any special
hardware support.

We performed an extensive set of experiments to investigate
the performance impact of DRAM bank partitioning on two
COTS multicore platforms with a set of synthetic and SPEC2006
benchmarks. Our evaluation results demonstrate that DRAM
bank partitioning significantly improves isolation and real-time
performance.

I. INTRODUCTION

In multicore platforms, DRAM is a crucial shared resource.
As applications become more memory intensive [1] and
processors include more cores, the performance of DRAM
becomes more critical for overall system performance [28].

DRAM consists of multiple resources called banks that
can be accessed in parallel. Therefore, memory performance
in multicore platforms can vary significantly depending on
how data are located in the banks and how the banks are
shared among the cores at a given time. Figure 1 shows the
best and the worst-case memory access scenarios in multicore
processors: when all cores are accessing data located in
different memory banks (best-case), requests can be processed
in parallel. On the other hand, when all cores are accessing
data located in the same memory bank (worst-case) at the same
time, requests would be delayed due to contention in the bank.

Unfortunately, today’s operating systems view DRAM as
a single resource and do not consider banks when allocat-
ing memory. Therefore, the exact locations of the allocated
memory over the banks are unpredictable. Moreover, memory
controllers are typically configured to interleave the banks
in order to improve bank-level parallelism [9]. This further
exacerbates the problem because multiple programs running
on different cores at a given time are likely to share banks,
even though they do not share memory space.

There have been several proposals to make DRAM more
predictable. Predator [2] and AMC [22] DRAM controllers
treat multiple banks as a single unit of access, effectively
transforming multiple resources into a single one. This makes
it possible to apply traditional single resource scheduling
algorithms, such as fixed priority or TDMA, to guarantee
memory performance. Other proposals employ private banking
schemes so that cores can exclusively access their private
DRAM banks by hardware design [27], [24]. All these propos-
als, however, require special hardware modifications and are
not directly applicable on today’s Commercial Off-The-Shelf
(COTS) systems.

In this paper, we present PALLOC, a DRAM bank-aware
memory allocator that can allocate memory to specific DRAM
banks by leveraging the page-based virtual memory system of
modern operating systems. Using PALLOC, a system designer
can partition DRAM banks in a flexible manner to improve
the quality of performance isolation of a multicore platform.
For example, the designer can create a virtual scheduling
partition [4] for each core and assign private DRAM banks
for each partition. Such private banking scheme effectively
eliminates bank sharing among cores without requiring any
hardware modification. Partitioning DRAM banks is not free in
the sense that processes in a partition cannot use more memory
than the size of the allocated DRAM banks, even though the
rest of the DRAM banks are not used. However, we argue
that the cost of adding more memory can be justifiable for
critical real-time systems. Furthermore, because PALLOC can
dynamically change bank assignments at runtime, careful bank
assignment schemes can greatly alleviate the limited space
problem.

Using PALLOC, we performed an extensive experimental
study that investigates the performance impact of private
banking in two COTS multicore platforms with a set of
synthetic and SPEC2006 benchmarks. Our findings are as
follows: First, the private banking strategy reduces perfor-
mance variations (up to 4.4X), and offers better real-time
performance on COTS multicore platforms. Second, using
a smaller number of memory banks can hurt single thread
performance (up to -35%) due to the reduced memory level
parallelism (MLP), but the degree of performance degradation
is not significant for most SPEC2006 benchmarks. Third, we
also investigated the performance impact of cache partitioning
in conjunction with DRAM bank partitioning, and found that
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Fig. 1: Best and worst-case memory access patterns on multicore

cache partitioning helps reduce performance variations but at
the cost of considerable single thread performance reduction
on SPEC2006 benchmarks (-18% on average). Lastly, although
space partitioning of DRAM banks (and caches) significantly
improves isolation, there are still other shared resources,
including the memory bus, that need to be addressed for better
performance isolation.

Our contributions are: (1) the design and implementation
of a DRAM bank-level partitioning algorithm in recent Linux
kernels; (2) the DRAM controller address mapping detection
methodology; (3) the detailed experimental performance anal-
ysis on two real COTS multicore platforms.

The remaining sections are organized as follows: Section II
provides background on DRAM operation and discusses the
problem of DRAM bank sharing in multicore platforms. Sec-
tion III presents the design and implementation of PALLOC.
Section IV describes the evaluation platforms and the imple-
mentation overhead analysis. Section V presents the evaluation
results with a set of synthetic benchmarks, while Section VI
details the results with SPEC2006 benchmarks. Section VII
discusses related work. Finally, we conclude in Section VIII.

II. BACKGROUND AND PROBLEMS

Modern DRAM memory systems are composed of a mem-
ory controller and memory devices. The controller handles
requests from CPUs or DMAs and memory devices store the
actual data. The device and controller are connected by a
command bus and a data bus. The controller typically has
a front-end and a back-end. The front-end receives requests,
keeps track of the status of the device, and generates a
set of memory commands required to handle each request.
The back end handles command arbitration, ensure that all
timing constraints are satisfied, and issues commands to the
device. Modern memory devices are organized into ranks
and each rank is divided into multiple banks, which can be
accessed in parallel provided that no collisions occur on either
buses. Each bank comprises a row-buffer and an array of

storage cells organized as rows1 and columns. Furthermore,
some systems have multiple memory channels, each of which
can be operated independently. Typically, multiple channels
are configured to interleave at the cache-line granularity to
improve average throughput.

In order to access the data stored in a DRAM row, an
Activate (ACT) command must be issued to load the data into
the row buffer first before it can be read or written. Once the
data is in the row buffer, a CAS command (read or write) can
be issued to retrieve or store the actual data. If a second request
wishes to access a different row from the same bank, the row
buffer must be written back to the array with a Pre-charge
(PRE) command first before the second row can be activated.
Finally, since DRAM storage contains capacitors, the device
must be periodically restored to full voltage level, a periodic
Refresh (REF) command must be issued to all ranks and banks.
The result of REF is that all row buffers are written back to
the data array (i.e., all row buffers are empty after refresh).

Due to hardware limitations, the memory device takes time
to perform different operations and therefore timing constraints
between various commands must be satisfied by the controller.
The operation and timing constraints of memory devices are
defined by the JEDEC standard [13]. The key results of
these timing constraints are: 1) the latency for accessing a
closed row is much longer than accessing a row that is
already open. 2) Different banks can be operated in parallel
since there are no long timing constraints between banks. In
particular, the nominal device throughput can only be achieved
by simultaneously reading or writing in multiple banks at once.

Due to these reasons, most mid-high profile COTS DRAM
controllers employ an interleaved bank strategy with some
form of per-bank queueing. Under this scheme, consecutive
memory blocks in physical address space, typically of the
size of a memory page, are allocated to different banks. Once

1DRAM rows are also referred to as ’pages’ in the literature; we use the
term rows to avoid confusion with a virtual memory page.
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a request of a core reaches the front-end of the memory
controller, its physical address is used to identify the targeted
bank and then the corresponding commands are entered in
a queue for that bank. Since modern cores can issue a large
number of outstanding memory requests, with this mechanism
even a single application can simultaneously open and access
multiple rows in different banks, thus increasing its average
memory throughput.

Unfortunately, the discussed strategy has two major short-
comings when applied to real-time systems. First of all, there
is no guarantee that an application will indeed be able to access
multiple banks: if the OS is unaware of bank interleaving, in
the worst case it could allocate all memory pages for that appli-
cation to the same bank, resulting in much increased memory
latency compared to the average case. This dependency on run-
time decisions by the memory allocator can be a significant
potential source of unpredictability.

Second, even if the application memory is spread over
multiple banks, throughput can be significantly degraded in
a multicore system due to the effects of bank sharing. Since
banks are interleaved, any core in the system can access any
bank. If two applications running in parallel on different cores
access two different rows in the same bank, they can force
the memory controller to continuously pre-charge the row
buffer and open a new row every time an access is performed.
This loss of row locality can result in a much degraded row
hit ratio and thus a corresponding latency increases for both
applications. Furthermore, it creates a dependency between
applications running on different cores, which can greatly
complicate timing analysis. Finally, notice that in the worst-
case both issues can be simultaneously manifested, resulting
in the worst-case scenario of Figure 1, where all cores access
the same bank at the same time.

To avoid the bank sharing problem while still allowing for
bank-level parallelism in a multicore system, existing work in
the area of predictable real-time controllers has proposed to
employ a private bank scheme, where each core is assigned
either one or a set of exclusive banks [24], [27]. Since under
these schemes banks are not shared, cores cannot interfere
with each other by closing rows opened by another core. As
a matter of fact, interference is mostly limited to data bus
contention, resulting in better worst case latency bounds [27].
Unfortunately, the discussed solutions suffer from two main
limitations: first, COTS memory controllers do not typically
support private bank allocation. Hence, partitioning banks in
hardware would require modifications to existing memory
controllers, which is undesirable in COTS-based systems.
Second, hardware bank partitioning can be highly inflexible,
since banks must be statically allocated to cores. In the
next section, we will describe our software-based solution,
PALLOC, which solves the problem of bank sharing without
having aforementioned problems of hardware based solutions.

III. PALLOC: DRAM BANK-AWARE KERNEL MEMORY
ALLOCATOR

PALLOC is a kernel-level memory allocator that exploits
page-based virtual-to-physical memory translation to selec-

/∗ r e t u r n a f r e e page frame from t h e s e l e c t e d banks ∗ /
s t r u c t page ∗ p a l l o c f i n d p a g e ( bankmap )
{

f o r ( bank <− bankmap ) {
i f ( ! empty ( b a n k b i n s [ bank ] ) {

page = pop ( b a n k b i n s [ bank ] )
re turn page ;

}
}
re turn NULL;

}

/∗ r e t u r n a f r e e page frame (4KB) ∗ /
s t r u c t page ∗ r m q u e u e s m a l l e s t ( . . . )
{

f r e e l i s t <− f r e e pages
bankmap <− s e l e c t e d banks

/∗ s e a r c h page from bank cache ∗ /
page = p a l l o c f i n d p a g e ( bankmap ) ;
i f ( page )

re turn page ;

/∗ b u i l d bank cache & s e a r c h page ∗ /
f o r ( page <− f r e e l i s t ) {

bank = a d d r t o b a n k ( page ) ;
push ( b a n k b i n s [ bank ] , page ) ;
page = p a l l o c f i n d p a g e ( bankmap ) ;
i f ( page )

re turn page ;
}
re turn NULL;

}

Fig. 2: PALLOC implementation

tively allocate memory pages of each application to the desired
DRAM banks. The goal of PALLOC is to control applications’
memory locations in a way to minimize memory performance
unpredictability in multicore systems. As discussed in the
previous section, such unpredictability can be minimized by
eliminating bank sharing among parallel executing applica-
tions. Unlike hardware based approaches [27], [24], however,
PALLOC is a software based solution, which is fully compat-
ible with existing COTS hardware platforms and transparent
to applications (i.e., no need to modify application code.)

Figure 2 shows simplified pseudocode of the proposed
allocator. For simplicity, here we assume that the kernel
maintains a single free page list, freelist, although
the actual implementation deals with multiple freelists with
different sizes (more details later in this section). Here,
__rmqueue_smallest() is the main allocator function
called by the kernel. For user-level applications, this is called
when a page fault occurs. Instead of simply returning the
head of the freelist, PALLOC maintains a set of lists—
bank_bins, one per DRAM bank—to quickly find a page
from the selected banks, bankmap. If a page is found in one
of the bins for the banks, it returns the page and removes
the entry from the bin. If such page is not found, however,
PALLOC checks every page in the freelist iteratively, until it
finds a matching page. In the process, unmatched pages are
removed from the freelist and inserted into the corresponding
bins, to decrease the overhead of future allocations. While this
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greatly reduces the average overhead, PALLOC may still need
to traverse the entire freelist in the worst-case. As such, we
do not intend to target “real-time” memory allocation. Rather,
we are interested in application’s real-time performance after
memory allocation is completed. Nevertheless, we provide
detailed overhead analysis in Section IV-C that shows reason-
able allocation time performance of our implementation. An
important requirement for PALLOC is the ability to determine
the bank address for a given physical address, abstracted by
addr_to_bank() in the pseudocode. We describe ways to
identify this mapping information in Section IV-B.

We implemented PALLOC in Linux. The standard kernel
memory allocator used in Linux is based on the buddy algo-
rithm [16]. The buddy algorithm aggregates blocks (buddies)
of contiguous pages of exponential size (order) 2 and arranges
them in a set of free-lists (a list for each order). On a memory
request, the allocator returns the head of a free-list with a
matching size. We extend the buddy allocator to implement
the algorithm in Figure 2. PALLOC only handles the order
0 (4KiB) page allocation, while the original buddy allocator
handles the rest (order 1 or above). Because user-level memory
allocations are eventually performed at the page fault handler
with the page granularity (4KiB) 3, PALLOC can properly
control bank assignments for user-level applications. The most
common kernel internal allocation requests (getting a page
frame) are also handled by PALLOC. Note that freeing pages
is handled by the original buddy allocator so that the kernel
maintains the buddy structure. This also allows the kernel to
aggregate the freed pages to make a bigger page. In this way,
the kernel can keep both bank-aware order 0 pages and bigger
pages at the same time.

Finally, banks are configured through the CGROUP in-
terface in Linux. Once a CGROUP partition is created, it
provides a file interface to describe desired DRAM banks
for the partition. The setting can be modified at runtime and
the modified setting is immediately applied to all subsequent
memory allocations in the partition. If the assigned banks are
used up, in our current implementation, the standard kernel
action—trying to reclaim from the page cache and swapping
to the disk—will be taken even if other banks are free. For
better safety, we can use the standard CGROUP memsize limit
controller so that the OOM killer can kill off tasks in the
CGROUP partition.

One potential issue in using PALLOC is shared memory
regions, such as shared program text (disk cache pages). When
a process executes in a CGROUP partition, the pages that are
already allocated elsewhere, for example, the bash program
text pages, will be shared instead of reallocating the pages.
Therefore, these pages may not conform to the DRAM bank
setting of the CGROUP. In such case, a page-migration scheme
to migrate existing pages to different banks can be considered,
similar to NUMA page migration [17].

2An order N block refers to a block of 2N contiguous memory pages.
3We currently do not consider huge page allocation via mmap interface.

(a) Intel Xeon 3530 + 4 GiB DDR3 DIMM (16 banks)

(b) Freescale P4080 + 2x2 GiB DDR3 DIMM (32 banks)

Fig. 3: Memory address mappings

IV. EVALUATION SETUP

In this section, we present details on the hardware and
software platform used in our evaluation. In particular, we
discuss how to derive the bank mapping employed by the
memory controller, and we provide overhead analysis for our
Linux-based PALLOC implementation.

A. Hardware Platform

The primary platform used in this paper is a quad-core
Intel Xeon W3530 based desktop computer. The processor has
private 32K-I/32K-D (4/8 way) L1 cache, a private 256 KiB
(8 way) L2 cache for each core and a shared 8MiB (16 way)
L3 cache. The memory controller (MC) is integrated in the
processor and supports 1333 MHz DDR3 memory with the
maximum theoretical transfer rate of 10.6 GB/s. The computer
has a single-channel dual-rank 4 GiB PC10666 DDR3 DIMM
module, which has 16 DRAM banks (8 banks per rank). We
disabled hardware prefetchers and the turbo-boost feature to
improve predictability.

We also conducted some experiments on a Freescale P4080
platform, which features an eight-core PowerPC processor.
Each core has a private 32K-I/32K-D (8/8 way) L1 cache,
a private 256 KiB (8 way) L2 cache and shares two 1 MiB
(32 way) L3 caches (cache-line interleaved). The MC supports
1333 MHz DDR3 and the platform has two 2 GiB DDR3
DIMM modules in a dual-channel configuration, each of which
has 16 DRAM banks (for a total of 32 banks).

B. DRAM Controller Address Mapping

A prerequisite of PALLOC is the exact knowledge of
the address mapping of the DRAM controller. The physical
address of a memory request is translated by the memory
controller and mapped onto the physical structures of the
DRAM module: columns, rows, banks, and ranks. There are
many possible mapping schemes for a given hardware plat-
form. For example, one configuration could assign two most-
significant bits of a physical address to the “rank” address of
the DRAM module, while one could assign them to “bank”
address instead.

Unfortunately, the exact address mapping information is
typically not publicly available, which is indeed the case
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TABLE I: Page allocation overhead

size average (ns) max (ns) alloc
(MiB) palloc buddy palloc buddy pages

1 219 21 11,764 137 256
2 198 22 12,067 131 512
4 170 26 12,234 192 1,024
8 161 26 24,136 343 2,048

16 276 27 283,443 423 4,096
32 252 26 292,399 344 8,192
64 232 29 306,041 800 16,384

128 232 31 279,477 614 32,768
256 226 32 352,113 1,557 65,536
512 225 37 572,935 1,024 131,072

of our Intel Xeon platform. Therefore, we experimentally
determined the mapping information of the Xeon platform.
We use a specifically written micro-benchmark that traverses
a linked list over the physical address space (by mapping
the /dev/mem in Linux). The list has 32 entries and it
is engineered in such a way that the distance between two
successive entries is 8 MiB. The distance is large enough to
span through all the memory banks in the system, so that
each entry in the list will be placed in exactly the same
bank, under the assumption that banks are interleaved [6].
Note also that each entry is located at the exact same cache-
set. Therefore, iterating the 32 entries exhausts the 16 cache-
ways, forcing to access DRAM all the time. While a first
instance of the benchmark is running on a core, we execute
a second instance on a different core. Note that, in the latter
instance, the addresses of all the entries in the list are shifted
by b bits (i.e., offset = 1 � b). If the shifted addresses are
mapped to the same memory banks as the first instance, then
the measured memory performance will drop due to bank
conflicts. Conversely, if the addresses are mapped to a different
bank, the measured memory performance will be higher since
no bank conflict will be experienced. By varying b, we identify
the address bits that are associated with memory banks.

On the other hand, the P4080 platform provides detailed
documentation about the exact physical address-to-DRAM
mapping information.

Figure 3 shows the identified memory mappings of both
platforms. The banks, channel, and cache-sets show address
bits for DRAM banks, MC channels, and L3 cache index,
respectively.

C. Software Implementation Overhead Analysis

We implemented PALLOC on the standard Linux 3.6.0 ker-
nel for the Intel Xeon platform. Kernel modifications to imple-
ment PALLOC are small and easily portable: mostly by replac-
ing __rmqueue_smallest() in mm/page_alloc.c.
We also ported it to the Freescale’s custom Linux 3.0.6 kernel
for the P4080 platform.

Due to the design of PALLOC, the page allocation time can
vary widely depending on the availability of free pages for the
selected DRAM banks. To measure the allocation overhead,
we instrumented the allocator to collect time spent on the
allocator, while running a synthetic program that allocates and
accesses a specified amount of memory.

Table I shows the average and the worst-case per-page
allocation time of PALLOC and the unmodified buddy allo-
cator. For PALLOC, we run the benchmark on a CGROUP
partition with four DRAM banks assigned to it. Therefore, the
maximum allocatable memory space is 1024 MiB (256 MiB
per DRAM bank). On average, PALLOC adds less than
200ns overhead for each page allocation, compared to the
buddy allocator. The worst-case allocation time is, however,
noticeably higher than the buddy allocator, especially as the
total allocation size grows. This is because, as the number
of allocated pages increases, the number of remaining pages
that fall in the selected banks becomes increasingly low, even
though there are free pages in other DRAM banks. Note that
the experiment is unfavorable for PALLOC because all its
per-bank free lists (bins) are initially empty. In real multi-
programmed environment, however, the lists can be cached by
memory requests generated from other processes in different
partitions, thereby increasing PALLOC’s overall efficiency.
Furthermore, it is important to note that the buddy allocator
can also suffer significantly longer allocation delays when the
system-wide free pages are low, forcing the kernel to reclaim
pages from the kernel page cache and, eventually, to swap
pages to disks. For this reason, it is a standard practice to
allocate memory pages at the process initialization phase and
outside the critical real-time regions in order to make sure that
the allocation procedures are never invoked while processing
time-sensitive critical sections.

We also investigated the allocation overhead using the
SPEC2006 benchmarks and found that the total allocation
overhead is lower than 0.4% of the total execution time in
the most memory allocation intensive benchmark. Therefore,
we consider that the overhead of PALLOC is acceptable.

V. RESULTS WITH SYNTHETIC BENCHMARKS

In this section, we investigate the performance impact of
using private DRAM banks, through PALLOC, with a set of
synthetic benchmarks. We also investigate the architectural dif-
ferences in DRAM controllers of the two hardware platforms
we used in this paper.

A. Samebank vs. Diffbank
In this experiment, we use a synthetic benchmark La-

tency [29] to illustrate the performance impact of using private
DRAM banks. The benchmark is a pointer-chasing application
using a randomly shuffled linked-list. The two successive
memory instructions that access the elements of the linked
list contain read after write (RAW) dependency. Hence, the
second instruction cannot proceed and must stall until the first
one is completed. In other words, the benchmark can generate
only one outstanding memory request at a time. The size of the
linked-list is configured to be two times bigger than the size of
the LLC (last level cache), in order to make sure all memory
requests result in cache-misses. Since the list is randomly
shuffled over a big memory area, successive memory requests
are likely to target a different DRAM row. Therefore, Latency
is used to measure worst-case memory performance in terms
of latency and bandwidth. By running multiple instances of the
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Fig. 5: Samebank vs. Diffbank(s) on Freescale P4080.

Latency benchmark, we now show the performance impact of
using private DRAM banks.

The experiment setup is to run a Latency instance on Core0
while varying the number of co-running instances from 0 to
3 (one instance per core). We repeat the experiment in two
memory settings. In Samebank, all the memory pages of all
Latency instances are allocated in Bank0. In Diffbank, Core0
uses Bank0 and the other cores use Bank1.

Figure 4 shows the average memory access latency of the
Latency benchmark running on Core0. The X-axis shows
the number of co-running cores, each of which executes a
separate instance of the Latency benchmark. Note that the
average access latency is increased significantly in Samebank.
This is because all memory requests are serialized in Bank0,
i.e. they all result in bank conflicts. In Diffbank, however,
the memory requests from Core0 are serviced in parallel
with memory requests generated from other cores, because
they are accessing a different memory bank. As a result,
the instance of the Latency benchmark running at Core0
does not suffer any noticeable performance reduction. This
demonstrates the potential of private banking in providing
performance isolation.

B. Understanding DRAM Controller Architecture

Having the capability to control memory bank placement
using PALLOC allows us to investigate DRAM controller’s
characteristics. In particular, we are interested in the queueing
structure of the DRAM controller, as it has profound impact
on DRAM performance isolation. According to [10], the most
common queueing structures are 1) a shared global queue and

2) per-bank queues, but this information is rarely publicly
available on COTS components.

In this experiment, we reverse engineer such information
using PALLOC. The experiment setup is as follows. Each core
executes one Latency instance. Core0 always accesses Bank0.
For co-running cores, there are three cases: (1) In Samebank,
they access Bank0 (the same as Core0); (2) In Diffbank(B1-7),
they access Bank1-7; (3) In Diffbank(B1), they access Bank1.

Figure 5 shows Core0’s average latency as a function of
the number of other cores on the P4080 platform. Similar
to Figure 4, Samebank shows the worst performance. Inter-
estingly, however, Diffbank(B1-7) shows better performance
than Diffbank(B1), even though Core0 always accesses its
own Bank0 in both cases. From the result, we can infer that
P4080’s MC is unlikely to feature per-bank queues, because if
each bank had its own queue, then Diffbank(B1) would show
the same performance as Diffbank(B1-7). Instead, it is likely
to have a single global queue. Then, the better performance
of Diffbank(B1-7) can be explained as it can process multiple
requests in parallel (faster) using more banks.

We repeat the same experiment on the Intel Xeon platform.
Unlike the P4080 platform, we found that the results of
Diffbank(B1) and Diffbank(B1-7) are almost identical in the
Xeon platform. Therefore, the figure for this experiment looks
similar to Figure 4. This result suggests the Xeon’s MC has
per-bank queue and/or support request re-ordering mechanism
that favors open banks over closed banks.

In summary, the two platforms have different queueing
structures based on our experiments. For P4080, even if
we partition DRAM banks, the shared queue is still being
contended among cores, which may result in poor performance
isolation. On the other hand, Xeon can benefit better from
DRAM bank partitioning as contention at the memory con-
troller queue would be eliminated.

C. Real-Time Performance Impact

In this experiment, we explore the real-time performance
impact of using private DRAM banking in a realistic scenario,
modeling a simple real-time data acquisition system. The
system is composed of two tasks: a periodic real-time task
and a non-real-time task. The real-time task periodically reads
a memory region and performs basic processing. The com-
putation must be completed within a given deadline to avoid
data corruption, since the hardware can overwrite the buffer
with incoming data. The non-real-time task is responsible for
analyzing and post-processing the data acquired by the real-
time task.

We simulate the scenario on the Intel Xeon platform as
follows. First, we create a synthetic real-time task HRT that
periodically reads a chunk of main memory. Jobs are re-
leased with a 20 ms period (50Hz) and have to be finished
within a deadline of 13 ms. We schedule the task with the
SCHED FIFO real-time scheduling policy. The HRT task is
engineered to be insensitive to the shared L3 cache, so that
all its memory requests result in cache-misses. Second, for
the non-real-time data processing task, we use the standard
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Fig. 6: HRT runtime distribution on Intel Xeon. Core0-HRT, Core1-Xserver(none for (a))

TABLE II: HRT task runtime statistics on Intel Xeon.

Conf. average 99 pct. deadline stdev.(ms) (ms) miss(%)
Buddy (solo) 10.0 10.2 0 0.08
Buddy 12.2 14.3 27.9 1.05
Samebank 13.1 15.8 44.5 1.47
Diffbank 11.5 12.5 0.1 0.56

X-window server, which generates memory traffic whenever
it updates the screen. To make the X-server update the screen,
we keep printing text strings (the standard output of the HRT
program) on a gnome-terminal. The X-server runs with the
SCHED OTHER scheduling policy.

The two desired goals of the system are (1) to meet the
deadline of the HRT task and (2) to provide a high frame-rate
for the X-server. The former goal is more important than the
latter. We use the deadline miss ratio and the execution time
distribution to gauge the first goal. We use the CPU utilization
of the X-server to measure the latter goal.

We repeat the experiment on four different settings. In both
Buddy(solo) and Buddy, we use the standard buddy allocator,
hence utilizing all 16 DRAM banks. In Samebank, both HRT
and the X-server are assigned to the same eight banks - Bank0-
7. In Diffbank, HRT uses Bank0-7 while the X-server uses
Bank8-15. In Buddy(solo), we only run HRT on Core0, while
in the other settings, we also run the X-server on Core1.

Figure 6 shows the runtime distribution of HRT. Each figure
is plotted using 1000 samples collected over 20 seconds. The
X-axis shows the observed execution time (ms) while the Y-

TABLE III: HRT task runtime statistics on Freescale P4080.

Conf. average 99 pct. stdev.(ms) (ms)
Buddy (solo) 20.1 20.2 0.03
Buddy 48.7 49.6 0.28
Samebank 75.1 75.6 0.21
Diffbank 28.9 29.8 0.09

axis shows the number of samples observed in the time range.
Table II also shows relevant statistics for the same experiment.

In Buddy(solo), the runtime distribution of HRT is very sta-
ble at around 10 ms and the 99 percentile runtime is 10.2 ms.
When the X-server is co-scheduled in Buddy, however, the
average and the 99 percentile runtimes are increased to 12.2 ms
(up by 22%) and 14.3 ms (up by 40%) respectively, resulting
in 28% deadline violations. In Samebank, the average and the
99 percentile runtimes are further increased to 13.1 ms and
15.8 ms, respectively, resulting in 45% deadline misses. In
Diffbank, however, the average and the 99 percentile runtimes
are decreased to 11.5 ms and 12.4 ms, respectively, and
only one deadline violation is observed. This result shows
that isolating DRAM banks for critical tasks can significantly
improve the real-time performance of the system.

a) Result on P4080: We also performed a similar ex-
periment on the P4080 platform. In this experiment, however,
instead of running the X-server (as we do not have a working
X-server on the P4080 platform), we use Bandwidth bench-
mark [29], which simply accesses a big array without RAW
dependency (hence generating large memory traffic). Similar
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benchmark bandwidth RSS average memory
(MB/s) (MiB) IPC intensity

470.lbm 3158 409 0.88
462.libquantum 3124 64 0.83
437.leslie3d 2346 123 0.76
433.milc 2313 523 0.80 High
482.sphinx3 1649 40 1.11
450.soplex 1211 108 0.70
434.zeusmp 1122 502 1.13
483.xalancbmk 798 110 0.63
436.cactusADM 702 623 0.93
403.gcc 618 196 1.02
473.astar 378 325 0.66 Medium
471.omnetpp 203 173 1.09
447.dealII 136 6 1.61
481.wrf 131 570 1.89
400.perlbench 124 147 1.50

TABLE IV: SPEC2006 characteristics on Intel Xeon

to the previous experiment on Intel Xeon, in Samebank, all
benchmarks are assigned to use the same Bank0. In Diffbank,
the seven instances of Bandwidth are assigned to all DRAM
banks except Bank0. Table III shows that the Diffbank con-
figuration offers superior real-time performance.

VI. RESULTS WITH SPEC2006

In this section, we investigate the performance impact of
partitioning DRAM banks and caches with the SPEC2006
benchmark suite on the Intel Xeon platform. We investigate
both solo performance (single core) and co-run performance
(four cores) in the presence of heavy memory contention.

Table IV shows the characteristics of SPEC2006 bench-
marks used in this paper. RSS and IPC denote Resident Set
Size and Instruction-Per-Cycles respectively. The benchmarks
are sorted in descending order of the average memory band-
width usage (MB/s). We excluded benchmarks that are either
CPU intensive (i.e., bandwidth < 100 MB/s) or allocate too
much memory space (i.e., RSS > 750MiB) for the purpose of
our evaluation.

A. DRAM Bank Partitioning

In this experiment, we investigate the performance impact
of DRAM bank partitioning to the single thread performance.

We first introduce a bitmap notation to denote DRAM banks
mapped to the partition. As shown in 3(a), the Intel Xeon
platform has 16 DRAM banks that are addressed by four bits
in the physical address: bits 20, 19, 13, and 12. We denote the
selected banks by concatenating these four bits in order. For
example, [000X] specifies two DRAM banks in which the
address bit 20, 19, and 13 are all zero, and the bit 12 is either
0 or 1. Likewise, [0XXX] indicates eight DRAM banks in
which the address bit 20 is zero and all remaining three bits
(bit 19, 13, 12) are either 0 or 1.

The experiment setup is as follows. We create a CGROUP
partition and assign a subset of DRAM banks to it. We then
run each SPEC2006 benchmark in the partition for 10 seconds
and measure the average IPC. We repeat the experiment in four
different bank assignments. In Buddy, we do not use PALLOC.
Hence, all 16 memory banks are utilized by the standard buddy
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Fig. 8: Performance impact of private DRAM banks (PB) and
private cache (PC) on unicore.

allocator; In 4banks/8banks/16banks, banks are selected by
[00XX]/[0XXX]/[XXXX] , respectively.

Figure 7 shows the normalized IPC of SPEC2006 for each
bank assignment scheme. Overall, the number of banks is
generally positively correlated with the performance, although
not always. This is because the probability of achieving more
memory level parallelism (MLP) is higher when more banks
are used to allocate the same amount of memory. Because
modern out-of-order processors can generate multiple out-
standing memory requests at a time, a single threaded program
can benefit from the parallelism. For example, 470.lbm’s
performance improves by 29% by increasing banks from four
to eight. For most benchmarks, however, the performance
impact of partitioning DRAM banks is modest: the difference
between 4banks and Buddy is 9% on average.

B. Cache Partitioning

In this experiment, we investigate the performance impact
of cache partitioning, coupled with DRAM bank partitions, to
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Fig. 9: Slowdown ratios of SPEC2006. Core0=X-axis, Core1-
3=470.lbm×3.

the single thread performance.
In most processors, L2 and L3 are indexed by the physical

address. For example, our Xeon processor has 16-way 8 MiB
(512 KB/way) shared L3 cache in which the cache-set is deter-
mined by using address bits [18:6] of the physical address (L2
cache uses [14:6]). Note that two bits are overlapped with the
lower part of DRAM bank bits [13:12] (see Figure 3(a)). This
means that selecting bits [13:12] to partition DRAM banks
has a side effect of partitioning cache-sets. To investigate
the performance impact of such cache-partitioning, we repeat
the experiment described in the previous subsection, but in
two different bank (and cache) assignments. In PB, we use
four DRAM banks, selected by [00XX]. In this setting, each
task can use the entire cache; In PB+PC, however, DRAM
banks are selected by [XX00] that addresses only 1/4 of the
L2&L3.

Figure 8 shows the normalized performance of the
SPEC2006 benchmarks under PB and PB+PC (normalized
to PB). As expected, partitioning cache PB+PC generally
negatively affects to the performance, compared to partitioning
DRAM banks only (PB). One exception is 462.libquantum,
which shows better performance under PB+PC. One reason
of this behavior is that the benchmark is completely cache
insensitive unless the cache size is bigger than its working
set size [11]. Since the 8 MiB L3 cache on our Intel Xeon
is smaller than its working set size, cache partitioning does
not negatively impact its performance. Overall, the single
thread performance of SPEC2006 benchmarks is 18% better,
on average, in PB (full cache) than in PB+PC (1/4 cache).

C. Performance Isolation and Throughput

In this experiment, we investigate the degree of performance
isolation achieved by partitioning DRAM banks (and cache)
in the presence of memory intensive co-runners.

The basic setup is as follows: We first run the subject
SPEC benchmark on Core0 for 10 seconds and measure the
average IPC—i.e., Solo IPC. Next, we launch three 470.lbm
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Fig. 10: Normalized IPC of SPEC2006. Core0: X-axis, Core1-
3: 470.lbm×3.

instances on the other cores (Core 1, 2 and 3) to generate
memory traffic, then repeat the experiment to measure the
average IPC of SPEC2006 on Core0—i.e.,Corun IPC. We
repeat the whole experiments in three different memory allo-
cation schemes. In Buddy, we use the standard Linux Buddy
allocator; in PB, DRAM banks are equally partitioned to each
core so that it can exclusive access 4 banks (out of 16 total
banks), but the caches are not partitioned— Core0=[00XX],
Core1=[01XX], Core2=[10XX], and Core3=[11XX]; In
PB+PC, both DRAM banks and the caches are par-
titioned to each core—Core0=[XX00], Core1=[XX01],
Core2=[XX10], and Core3=[XX11].

To quantify the degree of performance isolation of each
memory allocation method, we use the slowdown ratio metric,
which is defined as follows.

Slowdown ratio =
Solo IPC

Corun IPC
(1)

If the slowdown ratio is high, it indicates poor performance
isolation. On the other hand, if the ratio is close to one, it
means stronger performance isolation.

Figure 9 shows the slowdown ratios of the SPEC2006
benchmarks under the three memory allocation schemes. On
average, partitioning DRAM banks and caches considerably
improves performance isolation: The average slowdown ratio
of Buddy is 3.29, while the slowdown ratios of PB and PB+PC
are 2.67 and 2.13, respectively. Note, however, that even in
PB+PC where both DRAM banks and caches are partitioned,
the slowdown ratio is far from the ideal unitary value. One
possible reason is that the memory data bus is still being
shared by all the cores. Therefore, the memory bandwidth
can become a bottleneck, especially considering the fact that
the co-running benchmark, the 470.lbm, is a highly memory
bandwidth intensive one.

Finally, the low slowdown ratios of PB+PC are partly
caused by relatively low solo performance compared to PB
(see Section VI-B and Figure 8.) To better understand perfor-
mance tradeoffs, Figure 10 shows corun performance of the
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benchmarks. In this figure, although PB+PC provides better
performance over PB, the difference is only 4%. Therefore,
depending on system requirements, one may favor PB over
PB+PC as it has 18% single thread performance advantage
on average, while providing a similar degree of co-run perfor-
mance.

VII. RELATED WORK

The basic idea of using DRAM organizational information
in allocating memory at the OS level is explored in several
recent work [23], [12], [14]. In [23], the goal is to maxi-
mize throughput by enforcing randomness in the page frame
allocation decision. This approach works when the number
of banks is much larger than the number of cores as the
probability of bank-conflicts would be low. It does not, how-
ever, eliminate bank-conflicts hence the worst-case behavior
is still the same. Our work is different in that we focus
on performance isolation and partition banks to completely
eliminate inter-core bank-conflicts. In [12], the main goal is
to reduce power consumption by arranging page allocations in
part of DRAM to allow the unused part of DRAM to make
transitions to low-power states. While their application level
coloring scheme can also be used for performance isolation,
their kernel level memory allocator does not naturally support
bank (and rank) interleaving modes, which are necessary for
bank-level partitioning. The work in [14] is most similar to our
work as it also partitions DRAM at the bank level amongst
cores. The differences are it focuses on throughput and the
evaluation is based on a simulator while our work focuses on
performance isolation and is based on actual implementation
on two real hardware platforms.

There are several predictable memory controller proposals
that are closely related to our work [24], [27], [2], [22],
[7]. The work in [24] and [27] both use the private banking
scheme similar to our work. Because each core accesses its
own banks, interferences due to bank sharing are eliminated.
They differ in that the controller in [24] uses close page
policy with TDMA scheduling while the work in [27] uses
open page policy with FCFS arbitration. Both approaches,
however, require hardware support to partition the banks from
the memory controller, while our work is implemented entirely
in software on COTS multicore platforms. AMC [22] and
Predator [2] utilize interleaved bank and close page policy.
Both approaches treat multiple memory banks as a single unit
of access which effectively transforms multiple resources into
a single resource. They differ in that AMC uses a round-robin
arbiter while Predator uses the credit-controlled static-priority
(CCSP) arbitration [3], which assigns priority to requestors in
order to guarantee minimum bandwidth and provide a bounded
latency. Again, these proposals require hardware modifications
to the existing COTS systems. On the other hand, our work
works on the existing COTS systems.

Cache partitioning has been studied in both hardware [15],
[21] and software [18], [19], [30], [25], [5], [26], [20]
perspectives. In software based approaches, commonly known
as cache coloring, the basic idea is similar to ours in the

sense that the physical locations, in this case cache-sets, are
considered in assigning memory objects. The first such work
can be found in [18]. More recently, Mancuso et al. proposed a
combination of coloring and lockdown mechanisms to perform
deterministic allocation of frequently accessed memory areas
in cache, protecting them from external interference [20]. Ward
et al. proposed an OS level cache scheduling technique. In
their work, the colors of accessed pages of an observed task
is tracked at an OS level, so that individual blocks of cache
can be considered as shared resources whose access has to
be serialized, thus allowing to study the problem from a
scheduling point of view [26]. Herter et al. proposed CAMA,
a user-level memory allocator for better WCET analysis and
deterministic time allocation [8]. Our work focuses on DRAM
banks but can be used in conjunction with cache partitioning to
provide better isolation as we demonstrated in our evaluation.

VIII. CONCLUSION

We presented PALLOC, a DRAM bank-aware memory
allocator, for performance isolation on multicore platforms.
It exploits the page-based virtual memory system to allocate
memory pages on specific DRAM banks. This allows us to
configure systems in a way to minimize bank sharing among
concurrently executing applications.

Using PALLOC, we performed an extensive set of exper-
iments to investigate the performance impact of the private
DRAM banking strategy on two COTS hardware platforms
with a set of synthetic and SPEC2006 benchmarks. Our finding
is that private DRAM banking significantly improves the
quality of performance isolation and real-time performance
on COTS multicore platforms. However, we also found that
partitioning DRAM banks (and caches) is still far from ideal
performance isolation due to contention in other shared re-
sources, including the memory bus, in the memory hierarchy.

To achieve better performance isolation, we plan to incor-
porate bandwidth management techniques [29], together with
the space partitioning techniques presented in this paper.
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