
Analyzable and Practical Real-Time Gang
Scheduling on Multicore Using RT-Gang

Waqar Ali, Michael Bechtel, Heechul Yun

University of Kansas

Outline

• RT-Gang

• Tutorial

• DeepPicar Case Study

2

Multicore Processors

• Provide high computing performance

• Needed for intelligent safety-critical real-time
systems

3

Parallel Real-Time Tasks

• Many emerging workloads in AI, vision,
robotics are parallel real-time tasks

4

Effect of parallelization on DNN control task

33% 50%

DNN based real-time control *

* M. Bojarski, "End to End Learning for Self-Driving Cars." arXiv:1604.07316, 2016

Effect of Co-Scheduling

• DNN control task suffers >10X slowdown

– Due to interference in shared memory hierarchy

5

 0

 2

 4

 6

 8

 10

 12

DNN (Core 0,1) BwWrite (Core 2,3)

N
o
rm

a
liz

e
d
 E

x
e
u
c
ti
o
n
 T

im
e

Solo
Corun

DRAM

LLC

Core1 Core2 Core3 Core4

DNN BwWrite

5%

10X

interference

It can be worse! (> 300X slowdown)*

* Michael G. Bechtel and Heechul Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Preven
tion.” In RTAS, 2019

Observations

• Interference in shared memory hierarchy
– Can be very high and unpredictable
– Depends on the hardware (black box)

• Constructive sharing (Good)
– Between threads of a single parallel task

• Destructive sharing (Bad)
– Between threads of different tasks

• Goal: analyzable and efficient parallel real-time task
scheduling framework for multicore
– By avoiding destructive sharing

6

RT-Gang

• One (parallel) real-time task---a gang---at a time
– Eliminate inter-task interference by construction

• Schedule best-effort tasks during slacks w/ throttling
– Improve utilization with bounded impacts on the RT tasks

7
* Waqar Ali and Heechul Yun. RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems. In RTAS, 2019.

Safe Best-Effort Task Throttling

• Throttle the best-effort core(s) if it exceeds a
given bandwidth budget set by the RT task

8

1ms 2ms0

Budget

Core

activity

2
1

computation memory fetch

* Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Pl
atforms.” In RTAS, 2013

Basic throttling mechanism *

* W. Ali and H. Yun., “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.” In ECRTS, 2018

Implementation

• Modified Linux’s RT scheduler

– Implemented as a “feature” of SCHED_FIFO
(sched/rt.c)

• Best-effort task throttling

– A separate kernel module based on BWLOCK++ *

9
* W. Ali and H. Yun., “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.” In ECRTS, 2018

Outline

• RT-Gang

• Tutorial

• DeepPicar Case Study

10

Source Code Repository

• git clone https://github.com/CSL-KU/RT-Gang

11

https://github.com/CSL-KU/RT-Gang

Installation

• From the Linux kernel directory:

– patch -p1 < ../RT-Gang/rtgang-v4.19.patch

– Compile & install & restart

• To check if installed correctly:
– sudo cat /sys/kernel/debug/sched_features | grep RT_GANG_LOCK

12

Enable/Disable RT-Gang

• RT-Gang is enabled/disabled through the
kernel's scheduling feature

13

Best-Effort Task Throttling

• Throttling is enabled through a kernel module
– cd RT-Gang/throttling/kernel_module

– make

– sudo insmod exe/bwlockmod.ko

14

Best-Effort Task Throttling

• Only occurs when a real-time task is running
– W/o real-time task

– W/ real-time task

15

Outline

• RT-Gang

• Tutorial

• DeepPicar Case Study

16

DeepPicar

• A low cost, small scale replication of NVIDIA’s DAVE-2

• Uses the exact same DNN

• Runs on a Raspberry Pi 3 in real-time

17
* Bechtel et al. DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car. In RTCSA, 2018

https://github.com/mbechtel2/DeepPicar-v2

https://github.com/mbechtel2/DeepPicar-v2

DNN based Real-Time Control

• DNN Inferencing is the most compute intensive part.

• Parallelized by TensorFlow to utilize multiple cores.

18

Experiment Setup

• DNN control task of DeepPicar (real-world RT)

• IsolBench BwWrite benchmark (synthetic RT)

• Parboil benchmarks (real-world BE)

19

Task WCET
(C ms)

Period
(P ms)

Threads

34 100 2

220 340 2

∞ N/A 4

∞ N/A 4
DRAM

LLC

Core1 Core2 Core3 Core4

DNN BwWrite

Parboil cutcp & lbm

RT

BE

Execution Time Distribution

• RT-Gang achieves deterministic timing

20

What does this look like in the real world?

CoSched (w/o RT-Gang)

21
https://youtu.be/Jm6KSDqlqiU

https://youtu.be/Jm6KSDqlqiU

RT-Gang

22
https://youtu.be/pk0j063cUAs

https://youtu.be/pk0j063cUAs

Conclusion

• Parallel real-time task scheduling

– Hard to analyze on COTS multicore

– Due to interference in shared memory hierarchy

• RT-Gang

– Analyzable and efficient parallel real-time gang
scheduling framework, implemented in Linux

– Avoid interference by construction

• Can protect critical real-time tasks

23

https://github.com/CSL-KU/rt-gang

Thank You!

Disclaimer:

This research is supported by NSF CNS 1718880, CNS 1815959, and
NSA Science of Security initiative contract #H98230-18-D-0009.

24

