RT-Gang: Real-Time Gang Scheduling
Framework for Safety-Critical Systems




Multicore Processors

* Provide high computing performance

* Needed for intelligent safety-critical real-time
systems




Parallel Real-Time Tasks

* Many emerging workloads in Al, vision,
robotics are parallel real-time tasks

Effect of parallelization on DNN control task
100

80 - .

60 - (o)) 4
4630 | 33% 50% 20

Avg. processing time (ms)

! fca: fully-connected layer H r4
| 10neurons I 40 —
fe3: fully-connected layer 3
[ 0 neuron: 1 fcz: full di
uuuuuuuuuu ] certu y-connected layer e e Qe __25_66____ — . 30
| T — . fcl: fully-connected layer . 2
convs: 64@1x18 HZ
3 convolutional layer 2 0 - _|
e conva: 64@3x20
convolutional layer
- 3x3 kernel
— conv3: 48@5x22
convolutional layer
2 conv2: 36@14x47 0

convolutional layer

S oxS kernel convl: 24@31x98 1 2 3 4

convolutional layer

5x5 kernel
— input: 200x66 RGB pixels #Of cores

— KU

KANSAS . Bojarski, "End to End Learning for Self-Driving Cars." arXiv:1604.07316, 2016



Effect of Co-Scheduling

12

Solo C—

10 . Corun N

4 )

BwWrite

DNN
Corel | Core2 || Core3 | Cored
L

DRAM

6 10X l

Normalized Exeuction Time

interference
DNN (Core 0,1) BwWrite (Core 2,3)

e DNN control task suffers >10X slowdown

— Due to inte It can be worse! [Bechtel, RTAS'19]

(SR [Bechtel, RTAS’19] Michael G. Bechtel and Heechul Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: An 4

alysis and Prevention.” In RTAS, 2019 (to appear)



Observations

* |Interference in shared memory hierarchy
— Can be very high and unpredictable
— Depends on the hardware (black box)

e Constructive sharing (Good)
— Between threads of a single parallel task

e Destructive sharing (Bad)
— Between threads of different tasks

* Goal: analyzable and efficient parallel real-time
task scheduling framework for multicore

— K

THE UNIVERSITY OF



RT-Gang

Core 1

1 release

Core 2 T completion

222 Idle or best-effort
Core 3

real-time

1
priority: t,<t, <t
Core 4 1S LS

4 t t, 4 4 4

* One (parallel) real-time task---a gang---at a time
— Eliminate inter-task interference by construction

* Schedule best-effort tasks during slacks w/ throttling
— Improve utilization with bounded impacts on the RT tasks

EEEEEEEEEEE



Safe Best-Effort Task Throttling

* Throttle the best-effort core(s) if it exceeds a
given bandwidth budget set by the RT task

2
Budget

Core
activity

0 ims 2ms

_ computation _memory fetch

Throttling mechanism [Yun RTAS13]

KANSAS [Yun, RTAS’13] Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in
Multi-core Platforms.” In RTAS, 2013




Virtual Gang

Virtual gang Virtual gang
Core 1 Core 1
Core 2 Core 2 =
Core 3 Core 3
Core 4 Core 4
t, t,
(a) prio (tg) > prio (t4) (b) prio (tg) < prio (t4)

* Statically group RT tasks as a “virtual gang”

— All threads of a virtual gang are scheduled together
— KU

KANSAS



Implementation

* Modified Linux’s RT scheduler
— Implemented as a “feature” of SCHED_FIFO (sched/rt.c)
— Enforce one real-time priority across all cores (invariant)

— A high priority RT thread preempts lower priority RT
threads on any cores (gang preemption)

* Best-effort task throttling
— Based on BWLOCK++ [All, ECRTS"18]
— Each RT task sets the tolerable throttling threshold

— Enforced by the kernel-level bandwidth regulators for any
co-scheduled best-effort tasks

— K

KANSAS  [Ali, ECRTS’18] W. Ali and H. Yun., “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.”
In ECRTS, 2018



Evaluation

* Setup
— Linux 4.14 baseline
— Raspberry Pi 3 (4x Cortex-A53)
— NVIDIA Jetson TX2 (4x Cortex-A57)

 Benchmarks
— |solBench (synthetic RT/BE)
— DNN control task of DeepPicar (real-world RT)

— Parboil benchmarks (real-world BE)

— K

THE UNIVERSITY OF



Synthetic Taskset

7 6.5 30
Mo, Mo, N0 EEE . kthrottle

<idle=>-0
41?8'872588 sched_switch

1

'h!-ﬂﬂﬂi

I 1
au_Ix = a=3333 au_1¥

o5 gie »-0
switch _swi sched) switch sched_switch scheq

< 20-msec

v

<idle>-0 L <idle>-0

CPU
CPU

sched_switch
|

CPU
CPU

'd_switch ed_swild sched_switch sched_switch

RT-Task Interference Baseline Linux

<idle>-0 3503.100552

1
1
1
<idle>-0 le>-0
sched_switch 3503. 13053 E
1

sched_switch sched_switch

CPU ©
CPU

- tat_ 1= au_1= ldU_L;I
switch sched_switch schednsmtch sched_ sthch schednswn:ch sched_ smtch schedy

=

—_

Gu_oe_Tnerm-3507
sched_switch
!

sch_ed_gwitch
]

NY

CPU
CPU 3

s

sched_switch sched_switch

[RApp S E—

RT-Gang Gang Preemption

2 Deterministic timing is achieved

11




DNN Taskset

= S0l0 == Co0-Sched === RT-Gang
1.0 -
0.8 -
5 0.6 Task | WCET | Period #
(@) (C ms) (P ms) | Threads
0.4- tnn 34 78 2
L 47 100 4
0.2 - tglftcp @ N/A 4
G 0 N/A 4
0.0 | o | | |
0 20 40 60 80 100

DNN Inference Time (msec)

W Deterministic timing is achieved

KANSAS
12



Related Work

* Gang scheduling

— J. Goossens et al. “Gang FTP scheduling of periodic and
parallel rigid real-time tasks.” In RTNS, 2010

— S. Kato et al. “Gang EDF scheduling of parallel task
systems.” In RTSS, 2009

— A. Melani et al., “A scheduling framework for handling
integrated modular avionic systems on multicore
platforms.” In RTCSA, 2017

* Key differences of our work
— First gang scheduling implementation on an actual OS
— Integrate throttling to safely co-schedule best-effort tasks

— K

THE UNIVERSITY OF



Conclusion

* Parallel real-time task scheduling
— Hard to analyze on COTS multicore
— Due to interference in shared memory hierarchy
* RT-Gang
— Analyzable and efficient parallel real-time gang
scheduling framework
— Implemented in Linux

https://github.com/CSL-KU/rt-gang

EEEEEEEEEEEEE

14



Thank You!

Disclaimer:

This research is supported by NSF CNS 1718880, CNS 1815959, and
NSA Science of Security initiative contract #4198230-18-D-00089.

EEEEEEEEEEEEE



