
Waqar Ali, Heechul Yun

University of Kansas

Multicore Processors

• Provide high computing performance

• Needed for intelligent safety-critical real-time
systems

2

Parallel Real-Time Tasks

• Many emerging workloads in AI, vision,
robotics are parallel real-time tasks

3

Effect of parallelization on DNN control task

33% 50%

DNN based real-time control

M. Bojarski, "End to End Learning for Self-Driving Cars." arXiv:1604.07316, 2016

Effect of Co-Scheduling

• DNN control task suffers >10X slowdown

– Due to interference in shared memory hierarchy

4

 0

 2

 4

 6

 8

 10

 12

DNN (Core 0,1) BwWrite (Core 2,3)

N
o
rm

a
liz

e
d
 E

x
e
u
c
ti
o
n
 T

im
e

Solo
Corun

DRAM

LLC

Core1 Core2 Core3 Core4

DNN BwWrite

5%

10X

interference

It can be worse! [Bechtel, RTAS’19]

[Bechtel, RTAS’19] Michael G. Bechtel and Heechul Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: An
alysis and Prevention.” In RTAS, 2019 (to appear)

Observations

• Interference in shared memory hierarchy
– Can be very high and unpredictable
– Depends on the hardware (black box)

• Constructive sharing (Good)
– Between threads of a single parallel task

• Destructive sharing (Bad)
– Between threads of different tasks

• Goal: analyzable and efficient parallel real-time
task scheduling framework for multicore

5

RT-Gang

• One (parallel) real-time task---a gang---at a time
– Eliminate inter-task interference by construction

• Schedule best-effort tasks during slacks w/ throttling
– Improve utilization with bounded impacts on the RT tasks

6

Safe Best-Effort Task Throttling

• Throttle the best-effort core(s) if it exceeds a
given bandwidth budget set by the RT task

7

1ms 2ms0

Budget

Core

activity

2
1

computation memory fetch

[Yun, RTAS’13] Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in
Multi-core Platforms.” In RTAS, 2013

Throttling mechanism [Yun, RTAS’13]

Virtual Gang

• Statically group RT tasks as a “virtual gang”

– All threads of a virtual gang are scheduled together

8

(a) prio (tg) > prio (t4) (b) prio (tg) < prio (t4)

Implementation

• Modified Linux’s RT scheduler
– Implemented as a “feature” of SCHED_FIFO (sched/rt.c)

– Enforce one real-time priority across all cores (invariant)

– A high priority RT thread preempts lower priority RT
threads on any cores (gang preemption)

• Best-effort task throttling
– Based on BWLOCK++ [Ali, ECRTS’18]

– Each RT task sets the tolerable throttling threshold

– Enforced by the kernel-level bandwidth regulators for any
co-scheduled best-effort tasks

9
[Ali, ECRTS’18] W. Ali and H. Yun., “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.”
In ECRTS, 2018

Evaluation

• Setup

– Linux 4.14 baseline

– Raspberry Pi 3 (4x Cortex-A53)

– NVIDIA Jetson TX2 (4x Cortex-A57)

• Benchmarks

– IsolBench (synthetic RT/BE)

– DNN control task of DeepPicar (real-world RT)

– Parboil benchmarks (real-world BE)

10

Synthetic Taskset

11

RT-Task Interference

Gang Preemption

Throttling

BE-Task
Interference

Deterministic timing is achieved

RT
Task

WCET
(ms)

Period
(ms)

𝜏1 3.5 20

𝜏2 6.5 30

Baseline Linux

RT-Gang

DNN Taskset

12

Task WCET
(C ms)

Period
(P ms)

Threads

𝒕𝒅𝒏𝒏
𝒓𝒕 34 78 2

𝑡𝑏𝑤𝑤
𝑟𝑡 47 100 4

𝑡𝑐𝑢𝑡𝑐𝑝
𝑏𝑒 ∞ 𝑁/𝐴 4

𝑡𝑙𝑏𝑚
𝑏𝑒 ∞ 𝑁/𝐴 4

Deterministic timing is achieved

Related Work

• Gang scheduling
– J. Goossens et al. “Gang FTP scheduling of periodic and

parallel rigid real-time tasks.” In RTNS, 2010
– S. Kato et al. “Gang EDF scheduling of parallel task

systems.” In RTSS, 2009
– A. Melani et al., “A scheduling framework for handling

integrated modular avionic systems on multicore
platforms.” In RTCSA, 2017

• Key differences of our work
– First gang scheduling implementation on an actual OS
– Integrate throttling to safely co-schedule best-effort tasks

13

Conclusion

• Parallel real-time task scheduling

– Hard to analyze on COTS multicore

– Due to interference in shared memory hierarchy

• RT-Gang

– Analyzable and efficient parallel real-time gang
scheduling framework

– Implemented in Linux

14

https://github.com/CSL-KU/rt-gang

Thank You!

Disclaimer:

This research is supported by NSF CNS 1718880, CNS 1815959, and
NSA Science of Security initiative contract #H98230-18-D-0009.

15

