RT-Gang: Real-Time Gang Scheduling
Framework for Safety-Critical Systems




Multicore Processors

* Provide high computing performance

* Needed for intelligent safety-critical real-time
systems




Parallel Real-Time Tasks

* Many emerging workloads in Al, vision,
robotics are parallel real-time tasks
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Effect of Co-Scheduling
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e DNN control task suffers >10X slowdown

— Due to inte It can be worse! [Bechtel, RTAS'19]

(SR [Bechtel, RTAS’19] Michael G. Bechtel and Heechul Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: An 4

alysis and Prevention.” In RTAS, 2019 (to appear)



Observations

* |Interference in shared memory hierarchy
— Can be very high and unpredictable
— Depends on the hardware (black box)

e Constructive sharing (Good)
— Between threads of a single parallel task

e Destructive sharing (Bad)
— Between threads of different tasks

* Goal: analyzable and efficient parallel real-time
task scheduling framework for multicore
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RT-Gang
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* One (parallel) real-time task---a gang---at a time
— Eliminate inter-task interference by construction

* Schedule best-effort tasks during slacks w/ throttling
— Improve utilization with bounded impacts on the RT tasks
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Safe Best-Effort Task Throttling

* Throttle the best-effort core(s) if it exceeds a
given bandwidth budget set by the RT task
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Throttling mechanism [Yun RTAS13]

KANSAS [Yun, RTAS’13] Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in
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Virtual Gang

Virtual gang Virtual gang
Core 1 Core 1
Core 2 Core 2 =
Core 3 Core 3
Core 4 Core 4
t, t,
(a) prio (tg) > prio (t4) (b) prio (tg) < prio (t4)

* Statically group RT tasks as a “virtual gang”

— All threads of a virtual gang are scheduled together
— KU
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Implementation

* Modified Linux’s RT scheduler
— Implemented as a “feature” of SCHED_FIFO (sched/rt.c)
— Enforce one real-time priority across all cores (invariant)

— A high priority RT thread preempts lower priority RT
threads on any cores (gang preemption)

* Best-effort task throttling
— Based on BWLOCK++ [All, ECRTS"18]
— Each RT task sets the tolerable throttling threshold

— Enforced by the kernel-level bandwidth regulators for any
co-scheduled best-effort tasks
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Evaluation

* Setup
— Linux 4.14 baseline
— Raspberry Pi 3 (4x Cortex-A53)
— NVIDIA Jetson TX2 (4x Cortex-A57)

 Benchmarks
— |solBench (synthetic RT/BE)
— DNN control task of DeepPicar (real-world RT)

— Parboil benchmarks (real-world BE)
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Synthetic Taskset
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RT-Gang Gang Preemption

2 Deterministic timing is achieved
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DNN Taskset
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Related Work

* Gang scheduling

— J. Goossens et al. “Gang FTP scheduling of periodic and
parallel rigid real-time tasks.” In RTNS, 2010

— S. Kato et al. “Gang EDF scheduling of parallel task
systems.” In RTSS, 2009

— A. Melani et al., “A scheduling framework for handling
integrated modular avionic systems on multicore
platforms.” In RTCSA, 2017

* Key differences of our work
— First gang scheduling implementation on an actual OS
— Integrate throttling to safely co-schedule best-effort tasks
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Conclusion

* Parallel real-time task scheduling
— Hard to analyze on COTS multicore
— Due to interference in shared memory hierarchy
* RT-Gang
— Analyzable and efficient parallel real-time gang
scheduling framework
— Implemented in Linux

https://github.com/CSL-KU/rt-gang
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Thank You!

Disclaimer:

This research is supported by NSF CNS 1718880, CNS 1815959, and
NSA Science of Security initiative contract #4198230-18-D-00089.
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