

TinyLidarNet: 2D LiDAR-based End-to-End Deep Learning Model for F1TENTH Autonomous Racing

Mohammed Misbah Zarrar, Qitao Weng, Bakhbyergyen Yerjan, Ahmet Soyyigit, and Heechul Yun
University of Kansas

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024 - Paper Presentation)

F1Tenth Autonomous Racing

F1TENTH autonomous racing¹
 presents unique challenges due
 to constraints in size, weight, and
 power.

 Developing a computationally efficient, intelligent control algorithm is critical for fast, collision-free navigation. VESC IV

NVIDIA Jetson Xavier NX

Hokuyo UST-10LX 2D Planner LiDAR

End-to-End Deep Learning

(a) Standard robotics control pipeline

(b) End-to-end deep learning control

PilotNet

- NVIDIA's vision-based end-to-end deep learning model for autonomous driving.
- Successfully drove a real car on public roads.

Source: https://devblogs.nvidia.com/deep-learning-self-driving-cars/

9 layers (5 conv, 4 fc), ~250K weights

TinyLidarNet

- 2D LiDAR-based end-to-end CNN model for F1TENTH racing
- Inspired by PilotNet, but
- Takes 2D LiDAR scan as input instead of camera image
- Uses 1D convolutional filters for feature extraction
- Low computational cost (1/18 of the PilotNet)

TinyLidarNet

Parameters: 220,686

MACs: 1.5 million

Parameters: 252,219

MACs: 26.9 million

PilotNet

12th F1TENTH Grand Prix: Results and Insights

- Competitive performance
 - 3rd Place out of 13 teams
- Overtaking capability
 - Can overtake other vehicles
 - Without having seen such scenarios in training
- Generalizability
 - Robust under frequent altercations of tracks due to collisions

Experimental Setup

Training

Real World Racetrack

Moscow Raceway Track (MOS)

F1tenth GYM Track (GYM)

Spielberg Track (SPL)

12th F1tenth Racetrack

- 1. M. O'Kelly et al. "F1tenth: An open-source evaluation environment for continuous control and rein forcement learning," in NeurIPS 2019
- 2. J. Betz et al. "Autonomous vehicles on the edge: A survey on autonomous vehicle racing," IEEE Open J. Intell. Transp. Syst, 2022

	Average Lap Time (s)			Average Progress (%)				
Model	GYM	AUS	MOS	SPL	GYM	AUS	MOS	SPL
TinyLidarNet ^L	25.8	85.7	63.3	65.3	100	100	100	100
TinyLidarNet ^M	25.3	80	59.5	61.5	100	100	100	100
TinyLidarNet ^S	26.9	83.4	61.8	64.1	100	100	100	100
MLP256 ^{L[1]}	N/A	N/A	58.8	58.3	31	16	42	61
MLP256 ^M	28.4	N/A	64.3	65.7	100	17	58	78
MLP256 ^s	27.6	N/A	N/A	62.2	77	48	29	37

^{1.} X. Sun et al., "A benchmark comparison of imitation learning-based control policies for autonomous racing" (2023 IEEE Intelligent Vehicles Symposium)

^{2.} B. D. Evans, et al. "Unifying f1tenth autonomous racing: Survey, methods and benchmarks," (arXIV 2024).

Inference Latency

Platform	CPU	Memory	Storage
Xavier NX	NVIDIA Carmel 6C @ 1.9 GHz	8GB LPDDR4x	16GB eMMC
ESP32-S3	Xtensa LX7 2C @ 240 MHz	8MB PSRAM	8MB Flash
RPi Pico	ARM Cortex-M0+ 2C @ 133 MHz	264KB SRAM	2MB Flash

Model	Xavier NX (ms)	ESP32-S3 (ms)	RPi Pico (ms)	
TinyLidarNet ^L (fp32)	<1	838	2642	
TinyLidarNet ^L (int8)	<1	16	196	
TinyLidarNet ^M (int8)	<1	8	91	
TinyLidarNet ^S (int8)	<1	4	36	

Inference latency (ms) comparison on different computing platforms

Conclusion

- TinyLidarNet: Lightweight 2D LiDAR-based end-to-end model for F1TENTH racing.
- 1D CNN Filters: Effectively processes 2D LiDAR scans, outperforming state-of-the-art MLP models.
- Generalizability: Good performance on unseen simulated and real-world tracks.
- Low computing cost: Can run on low-cost microcontrollers (MCUs) and achieve real-time performance
- Future Research: Improvements in training data and model architecture.

Thank You!

