
Understanding and Mitigating 
Hardware Interference Channels 

on Heterogeneous Multicore
Heechul Yun

Associate Professor, EECS
University of Kansas

https://www.ittc.ku.edu/~heechul

https://www.ittc.ku.edu/~heechul


Agenda

• Understanding hardware interference channels
• Non-blocking cache
• Banked cache and DRAM organizations
• Effective “attack” strategies to cause massive cross-core interference

• AR-HUD automotive case study (ARM industrial challenge)
• Effects of interference on real-time application performance
• Limitations of existing mitigation solutions
• Our solution to mitigate the interference problem

• Discussion and conclusion
• Why RDT and MPAM may not be sufficient and how to fix them



Agenda

• Understanding hardware interference channels
• Non-blocking cache
• Banked cache and DRAM organizations
• Effective “attack” strategies to cause massive cross-core interference

• AR-HUD automotive case study (ARM industrial challenge)
• Effects of interference on real-time application performance
• Limitations of existing mitigation solutions
• Our solution to mitigate the interference problem

• Discussion and conclusion
• Why RDT and MPAM may not be sufficient and how to fix them



Memory-level parallelism (MLP)

• MLP is the key to understand modern multicore processors (MCP)
• essential for performance (throughput)

• A core can request multiple concurrent memory accesses at a time
• times the number of cores (and accelerators)

• Interconnect (bus) supports split-transactions
• multiple outstanding transactions can occur simultaneously 

• Non-blocking cache can handle multiple outstanding cache misses 
• it can continue to serve hits under multiple misses 

• Cache and DRAM are composed of multiple independent resources
• cache/dram banks can be accessed simultaneously in parallel



Memory-level parallelism (MLP)

Last Level Cache (LLC)

DRAM

Memory Controller (MC)

Core1 Core2 Core3 Core4

Request buffers 
Read       Write

Scheduler

MSHRs, WB Buffer

CMD/ADDR DAT
A

Out-of-order core:
Multiple memory requests

Non-blocking caches:
Multiple cache-misses

DRAM:
Multiple banks serve multiple requestsBank

Nd
Bank
Nd-1

Bank
2

Bank
1

MSHRs MSHRs MSHRs MSHRs

Memory controller:
Request buffering, re-ordering

Bank 1 Bank Nc

I DI DI DI D



Split-transaction bus

Figure source: John Paul Shen and Mikko H Lipasti. “Modern processor design: fundamentals of superscalar processors.” Waveland Press, 2013 

Interconnect is usually not a bottleneck



Non-blocking cache

• A core can generate multiple simultaneous accesses to a cache
• Multiple cores/accelerators can simultaneously access a shared cache
• So, a shared cache can get lots of parallel requests 
• A non-blocking shared cache is essential for performance



Non-blocking cache

• Can serve cache hits under multiple cache misses
• Essential for performance in multicore 

cpu cpu

miss hit miss

Miss penalty

Miss penalty

stall only when 
result is needed

D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81

cpu cpu

miss

Miss penalty

hit

Blocking cache Non-blocking cache



Non-blocking cache

• Cache internal structures are potential interference channels

Miss Status Holding Registers
● Track outstanding cache misses.
● Allow high memory-level 

parallelism

Writeback Buffer
● Hold evicted dirty lines 

(writebacks)
● Prevent cache refills from waiting

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In IEEE RTAS, 2016  (Best Paper Award)
Michael G. Bechtel and Heechul Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In IEEE RTAS, 2019  (Outstanding Paper Award)



Multi-bank cache/DRAM organizations

• Shared cache and DRAM are not a single resource
• Each is composed of multiple resources---banks
• Banks are (largely) independent and can be accessed in parallel
• Generally, more banks = more parallelism/throughput



Cache bank organization

• Multiple banks can be accessed simultaneously

Tag bank

ARM Cortex A72/A57 L2 cache bank organization

63 0

Data bank

6  5  4

memory address mapping



DRAM bank organization

• Multiple banks can be accessed simultaneously

Last Level Cache (LLC)

DRAM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

63 0

bank #

14 13 12 11

memory address mapping

Raspberry Pi 4 DRAM bank 
mapping (16 banks)



Multi-bank cache/DRAM organizations

• Can be a problem when all try to access the same cache/dram bank

Last Level Cache (LLC)

DRAM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

Core1 Core2 Core3 Core4

Shared Cache

Tag bank 1 Tag bank 2



Memory controller (MC)

• Schedule memory requests on DRAM chips
• Subject to DDR timing constraints
• Can re-order the requests to

maximize memory throughput
• Often prioritize reads over writes

unless too many writes are pending
• Scheduling algorithms can greatly 

impact worst-case timing

Read request
buffer

Write request
buffer

Bank 1
scheduler

Channel scheduler

Bank 2
scheduler

Bank N
scheduler

DRAM chips

Memory requests from cores

H. Yun, R. Pellizzoni, P. K. Valsan. “Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems.” In ECRTS, 2015



Effective strategies to cause interference

• Try to exhaust various internal hardware queues/buffers
• Try to generate many requests targeting a single resource (bank)
• Writes often cause worse contention than reads



Effects of cache internal buffer attacks

LLC

Core
1

Core
2

Core
3

Core
4

victim attackers

• Observed worst-case: >300X (times) slowdown on popular multicores
• Even when the cache is partitioned to protect the victim

>300X

M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.”  In IEEE RTAS, 2019

Sequential writes 
(a.k.a. ‘MemBomb’)



Effects of DRAM bank attacks

• Targeting a single DRAM bank caused up to 44X slowdown in real apps
• LLC space partitioning was not effective

M. G. Bechtel and H. Yun. “Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems.”  In IEEE Transactions on Computers, 2021

Bank-aware parallel
pointer chasing

Sequential writes 
(a.k.a. ‘MemBomb’)

Parallel pointer chasing

Victim on Core 1

>44X



Effects of cache bank attacks

• Accessing the same tag bank (and diff. data bank) à up to 10X slowdown
• Accessing different tag bank à near perfect isolation

~10X

Core0 Core 1 Core 2 Core3

Shared Cache

0 1 2 3 4 5 6 7

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.”  In IEEE RTAS, 2023



Effects of cache bank attacks

• Targeting a single cache bank caused up to 2.3X slowdown in real apps 
• LLC space partitioning and DRAM bandwidth throttling were not effective 

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.”  In IEEE RTAS, 2023

Bank-aware LLC fitting 
parallel pointer chasing

LLC fitting 
sequential writes 

LLC fitting parallel 
pointer chasing

Victim on Core 1

>2X



Summary

• Memory-level parallelism (MLP) is key to understand modern 
multicore processors (MCPs)
• High MLP designs at all levels of the memory hierarchy are essential 

for performance/throughput, but they also can be problematic 
hardware interference channels from a real-time perspective
• Contrary to popular beliefs, interconnects are usually not major 

interference channels in modern MCPs. Major ones are at the edges 
• There are effective “attack” strategies to cause massive cross-core 

interference, which cannot be easily mitigated by existing 
software/hardware partitioning techniques



Agenda

• Understanding hardware interference channels
• Non-blocking cache
• Banked cache and DRAM organizations
• Effective “attack” strategies to cause massive cross-core interference

• AR-HUD automotive case study (ARM industrial challenge)
• Effects of interference on real-time application performance
• Limitations of existing mitigation solutions
• Our solution to mitigate the interference problem

• Discussion and conclusion
• Why RDT and MPAM may not be sufficient and how to fix them



Image Source: https://www.ecrts.org/industrial-challenge-current-challenge/

https://www.ecrts.org/industrial-challenge-current-challenge/


Augmented reality head-up display (AR-HUD)

• ARM 2022 industrial challenge case study application
• Visual SLAM (OV2SLAM)

• Determine orientation and trajectory + generate a map of the surroundings 
• High-criticality real-time task

• Head-pose estimation DNN (Hope-Net)
• Estimate driver’s pose for better AR rendering that accounts for the driver’s 

viewpoint
• high-priority real-time task

• “Aggressor” tasks
• Other (synthetic) tasks that compete for the shared hardware resources of the SoC
• Best-effort (non real-time) priority

M. Andreozzi, G. Gabrielli, B. Venu, G. Travaglini. “Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm.”  In ECRTS, 2022



M. Bechtel, H. Yun. ”Analysis and Mitigation of Shared Resource Contention on Heterogeneous Multicore: An Industrial Case Study.” IEEE TC, 2024.



AR-HUD mapping on Jetson Nano

M. Bechtel, H. Yun. ”Analysis and Mitigation of Shared Resource Contention on Heterogeneous Multicore: An Industrial Case Study.” IEEE TC, 2024.



AR-HUD mapping on Jetson Nano

• Aggressor (DoS attack) tasks are scheduled on all cores as best-
effort tasks (using Linux CFS scheduler) to fully load the system

• L2 cache is partitioned w/ page coloring (*):  OV2SLAM vs. all else

Real-time tasks (Linux SCHED_FIFO) threads/core mapping and scheduling parameters

(*) H. Yun, R. Mancuso, Z. Wu, R. Pellizzoni. "PALLOC: DRAM Bank-Aware Memory Allocator for Performance Isolation on Multicore Platforms." In IEEE RTAS, 2014



Micro-architectural DoS attacks

• Configurable synthetic workloads to cause resource contention
• Sequential vs. random, read vs. write access patterns

27

Sequential Attacker 
(BwWrite)

Parallel Linked-List Attacker 
(PLLWrite)

M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.”  In IEEE RTAS, 2023



Cache bank-aware DoS attack

• Same as Parallel Linked-List (PLL) attacks but only keeps the 
addresses that map to a target LLC data bank

• LLC bank-aware PLL write attack = BkPLLWrite(LLC)

28
M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.”  In IEEE RTAS, 2023

Core1 Core2 Core3 Core4

Shared Cache
Tag bank 1 Tag bank 2



Impact of DoS attacks on OV2SLAM

Y-axis: Absolute Trajectory Error (ATE) = a standard measure of accuracy of SLAM. Lower is better.
X-axis: different micro-architectural denial-of-service (DoS) attacks

Working-set sizes:
(LLC) -> LLC fitting
(DRAM) -> DRAM fitting



Impact of DNN and DoS attacks on OV2SLAM

Completely 
failed to 
generate valid 
trajectory

Significantly 
deviated from 
the true 
trajectory



Our approach: RT-Gang++

Cache bandwidth throttling
• Throttle attacker’s access (from CPU) to the shared LLC
• Using per-core performance counters (based on MemGuard* )
• To limit cache (bank) bandwidth contention

GPU bandwidth throttling
• Throttle HopeNet DNN’s access (from GPU) to the shared DRAM
• Using NVIDIA’s memory controller level throttling mechanism
• To limit GPU induced memory b/w interference on CPU (running SLAM)

Partitioned gang scheduling
• To avoid inter-application interference on multiple multi-threaded RT apps.

(*) H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Platforms." In IEEE RTAS, 2013



Impact of RT-Gang++ on OV2SLAM

Successful 
interference 
mitigation



Summary

• Consolidating multiple RT/NRT tasks on heterogeneous multicore is 
challenging due to interference on shared hardware resources

• Cache bank-aware DoS attacks are especially effective in impacting 
performance of the real-time SLAM task in the AR-HUD case-study

• Executing a DNN task on the integrated GPU also significantly 
impact the performance of the SLAM on the CPU

• RT-Gang++ mitigates the interference problem via (1) software-
based cache bandwidth throttling, (2) hardware-based GPU 
bandwidth throttling, and (3) partitioned real-time gang scheduling. 



Agenda

• Understanding hardware interference channels
• Non-blocking cache
• Banked cache and DRAM organizations
• Effective “attack” strategies to cause massive cross-core interference

• AR-HUD automotive case study (ARM industrial challenge)
• Effects of interference on real-time application performance
• Limitations of existing mitigation solutions
• Our solution to mitigate the interference problem

• Discussion and conclusion
• Why RDT and MPAM may not be sufficient and how to fix them



“Better” hardware support?

• Intel Resource Director Technology (RDT)
• Available on recent Intel server processors
• Cache space (CAT) and memory bandwidth (MBA) control
• Not satisfactory for real-time, according to our studies (*) 

• ARM Memory System Resource Partitioning and Monitoring (MPAM)
• Not widely available yet (Where can I find one?)
• Also focus on (cache) space and (memory) bandwidth
• May not be sufficient for real-time systems?

(*) P. Sohal, M. G. Bechtel, R. Mancuso, H. Yun, O. Krieger. “A Closer Look at Intel Resource Director Technology (RDT),” in RTNS, 2022 
M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Resources in Intel’s Integrated CPU-GPU Platforms,” in ISORC, 2022



MPAM functionality

Figure source: ARM, “Learn the architecture - Memory System Resource Partitioning and Monitoring (MPAM) Software Guide,” 2023



MPAM cache portion (way) control

• Problem: can control way, but what about bank? (*)

Figure source: ARM, “Learn the architecture - Memory System Resource Partitioning and Monitoring (MPAM) Software Guide,” 2023

(*) M. G. Bechtel and H. Yun. “Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.”  In IEEE RTAS, 2023



MPAM memory bandwidth control

• Min/max limit partitioning

• Problem: stressing one DRAM bank (1/N peak b/w) can cause more 
delay than stressing all DRAM banks (*)

(*) M. G. Bechtel and H. Yun. “Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems.”  In IEEE Transactions on Computers, 2021

LLC

DRAM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core
1

Core
2

Core
3

Core
4

Figure source: ARM, “Learn the architecture - Memory System Resource Partitioning and Monitoring 
(MPAM) Software Guide,” 2023



Better hardware support: a wish list

• Better monitoring and throttling capabilities
• E.g., Per-bank (cache/dram) perf. counters and bandwidth regulators

• Better control over address-based resource mapping
• E.g., s/w controlled paddr -> bank mapping (of shared cache and DRAM)

• Better control over other internal shared hardware resources
• E.g., MSHRs (*), write-back buffer, etc. 

• Better memory abstraction
• E.g., deterministic memory type (**)

(*) P. K. Valsan, H. Yun, F. Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” In RTAS, 2016
(**) F. Farshchi, P. K. Valsan, R. Mancuso, H. Yun. “Deterministic Memory Abstraction and Supporting Multicore System Architecture.” In ECRTS, 2018



Conclusion

• Hardware interference channels on heterogeneous multicore are a 
serious threat to safety-critical real-time applications

• Existing techniques such as cache (space) partitioning and memory 
bandwidth throttling may not be sufficient 
• Unaware of cache/DRAM banks, internal shared hardware structures
• Do not necessarily provide worst-case execution time guarantees

• Better hardware support is needed for critical real-time systems



References
● M. Bechtel, H. Yun. ”Analysis and Mitigation of Shared Resource Contention on Heterogeneous Multicore: An Industrial Case Study.” IEEE Transactions on 

Computers, 2024. [paper] [arXiv]
● Michael Garrett Bechtel and Heechul Yun. Cache Bank-Aware Denial-of-Service Attacks on Multicore ARM Processors.  IEEE Intl. Conference on Real-Time and 

Embedded Technology and Applications Symposium (RTAS), May 2023. [paper] [slides] [code]
● Parul Sohal, Michael Bechtel, Renato Mancuso, Heechul Yun, Orran Krieger. A Closer Look at Intel Resource Director Technology (RDT). International 

Conference on Real-Time Networks and Systems (RTNS), 2022 [paper]
● Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Resources in Intel’s Integrated CPU-GPU Platforms. IEEE International 

Symposium on Real-Time Distributed Computing (ISORC), 2022 [paper] [code]
● Michael Bechtel and Heechul Yun. Memory-Aware Denial-of-Service Attacks on Shared Cache in Multicore Real-Time Systems. IEEE Transactions on Computers, 

2021. [paper] [code]
● Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: Bandwidth Regulation Unit for Real-Time Multicore Processors. IEEE Intl. Conference on Real-Time and 

Embedded Technology and Applications Symposium (RTAS), April 2020. [paper] [slides] [code] 
● Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention. IEEE Intl. Conference on Real-Time 

and Embedded Technology and Applications Symposium (RTAS), April 2019. [paper] [arXiv] [slides] [code] [data] (Outstanding Paper Award) 
● Farzad Farshchi, Prathap Kumar Valsan, Renato Mancuso, Heechul Yun. Deterministic Memory Abstraction and Supporting Multicore System Architecture. 

Euromicro Conference on Real-Time Systems (ECRTS), 2018 [paper] [slides] [code] 
● Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems. IEEE Intl. Conference 

on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016. [paper] [slides] [code] (Best Paper Award)
● Heechul Yun, Rodolfo Pellizzoni, Prathap Kumar Valsan. Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems. Euromicro

Conference on Real-Time Systems (ECRTS), 2015. [paper] [slides]
● Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. PALLOC: DRAM Bank-Aware Memory Allocator for Performance Isolation on Multicore 

Platforms. IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2014. [paper] [slides] [code]
● Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard: Memory Bandwidth Reservation System for Efficient Performance 

Isolation in Multi-core Platforms. IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS), 
2013. [paper][slides] [code]

https://arxiv.org/pdf/2304.13110.pdf
https://arxiv.org/abs/2304.13110
https://ittc.ku.edu/~heechul/papers/cachebank-rtas2023-camera.pdf
https://ittc.ku.edu/~heechul/papers/cachebank-rtas2023-slides.pdf
https://github.com/CSL-KU/CacheBankDOS
https://cs-people.bu.edu/rmancuso/files/papers/CloserLookRDT_RTNS22.pdf
https://ittc.ku.edu/~heechul/papers/intelcpugpuattack-isorc2022-camera.pdf
https://github.com/mbechtel2/GTCOS-DoS
https://ittc.ku.edu/~heechul/papers/hp_attack-tc2021.pdf
https://github.com/mbechtel2/MemoryAwareDOS
https://ittc.ku.edu/~heechul/papers/bru-rtas2020-camera.pdf
https://ittc.ku.edu/~heechul/papers/bru-rtas2020-slides.pdf
https://github.com/CSL-KU/bru-firesim
https://ittc.ku.edu/~heechul/papers/cachedos-rtas2019-camera.pdf
https://arxiv.org/abs/1903.01314
https://ittc.ku.edu/~heechul/papers/cachedos-rtas2019-slides.pdf
https://github.com/mbechtel2/memguard
https://github.com/mbechtel2/CacheDOS
http://drops.dagstuhl.de/opus/volltexte/2018/9001/pdf/LIPIcs-ECRTS-2018-1.pdf
https://ittc.ku.edu/~heechul/papers/2018-07-ECRTS-DM-web.pdf
https://github.com/CSL-KU/detmem
http://ittc.ku.edu/~heechul/papers/taming-rtas2016-camera.pdf
http://ittc.ku.edu/~heechul/papers/taming-rtas2016-slides.pdf
https://github.com/CSL-KU/IsolBench
https://ittc.ku.edu/~heechul/papers/analysis-ecrts15.pdf
https://ittc.ku.edu/~heechul/papers/analysis-ecrts15-slide.pdf
https://ittc.ku.edu/~heechul/papers/palloc-rtas2014.pdf
https://ittc.ku.edu/~heechul/papers/palloc-rtas2014-slides.pdf
https://github.com/heechul/palloc
https://ittc.ku.edu/~heechul/papers/memguard-rtas13.pdf
https://ittc.ku.edu/~heechul/papers/memguard-rtas13-slides.pdf
https://github.com/heechul/memguard/wiki/MemGuard


Thank you!
Disclaimer:

This research is supported in part by NSF grant CNS-1302563, CNS-1718880, CNS-1815959, 
CPS-2038923 and NSA Science of Security initiative contract no. H98230-18-D-000. 

33


