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3D Object Detection

• Cameras, Radars, LiDARs …

• Deep Neural Networks (DNN) are state-of-the-art (SOTA) for LiDAR

2Image credits (leftmost): https://www.rdvsystems.com/lidar-icon-4/
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LiDAR Object Detection DNNs
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LiDAR Object Detection DNNs
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LiDAR Object Detection DNNs
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LiDAR Object Detection DNNs
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LiDAR Object Detection DNNs
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Mean Latency on Jetson AGX Xavier
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Favor Latency or Accuracy?

9Image credits: https://tr.pinterest.com/pin/633811347586237182/

Predictions

• Objects move while detection 
happens.

– Predictions can be misaligned.

• Lower latency is favored in high 
misalignment scenario.

Time : t Time : t + d

Detection
latency : d
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Favor Latency or Accuracy?

10Crossing image credits: brgfx on Freepik

• Low misalignment 
scenario.

– Higher latency is tolerable.

– Higher accuracy is favored. Detection
latency : d

Time : t Time : t + d



Favor Latency or Accuracy?

• Best DNN model is environment dependent.

– One model does not fit all.
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Can we dynamically reconfigure our object detector to
make environment-dependent latency and accuracy trade-offs?



Anytime Algorithms

12[3] Boddy, M., and Dean T. L. “Solving Time-Dependent Planning Problems.” In Proceedings of the Eleventh International Joint 
Conference on Artificial Intelligence, 1989. 



LiDAR Object Detection DNN as an Anytime Algorithm

• DNN’s are not anytime by default.

• Possible Solution: Dynamically switching multiple DNNs
– Memory overhead

• Not suitable for edge

– Train/fine-tune multiple DNNs
• Might not have access to training pipeline

13



Goal

• Develop a versatile framework that can transform any single LiDAR object 
detection DNN into an anytime-capable one
– So, it can trade-off latency and accuracy dynamically at runtime.

• Our previous work[4] has limitations
– Modifies DNN architecture, enforces training
– No trade-offs on 3D backbone 

• We need a versatile solution
– Minimal dependency on DNN architecture

• Does not enforce training
• Broadly applicable

– Considers all important stages of the DNN

14[4] A. Soyyigit et. al., "Anytime-Lidar: Deadline-aware 3D Object Detection," 2022 IEEE 28th International Conference on Embed

ded and Real-Time Computing Systems and Applications (RTCSA)



VALO: Versatile Anytime framework for 
LiDAR Object Detection

• Anytime computing with scheduling of input data.
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Region Scheduling

• Consider the input as a fixed number of vertical regions.

– Skips empty regions by default.
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Last processed region
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• Select max num of regions that can meet the deadline.
• Follow round-robin order.

Region Scheduling
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WCET Prediction For a Given Subset of Regions
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WCET Prediction For a Given Subset of Regions
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• Post-processing time (e.g. Non-maximum suppression)

– Can be considered constant



WCET Prediction For a Given Subset of Regions
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• Dense input processing time

– Fixed for a given number of regions



WCET Prediction For a Given Subset of Regions
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• Sparse input processing time

– Can we predict it from the number of input voxels?



Calculating 𝐸𝑆
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3D Backbone Architecture
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3D Backbone Architecture
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3D Backbone Architecture
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3D Backbone Architecture
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• Layers in each block maintain same input size.

• Latency of each block is predictable for given |𝑉1|, |𝑉2|, |𝑉3|, |𝑉4|.

• We only know |𝑉1| before execution.

• We utilize the prior values of |𝑉2|, |𝑉3|, |𝑉4| for prediction.

𝑉1 SM SM SM SP SM SM SP SM SM SP SM SM SP

Block 1 Block 2 Block 3 Block 4Input Voxels



Forecasting

• Predict current object positions of 
previously detected objects

– Buffer latest detections for each input region.

– Forecast all buffered objects.

• Runs in parallel.

– Prioritize detections over forecasted objects.

28

Purple objects
are forecasted



Baseline Detection Head
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Optimized Detection Head
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Evaluation

• Applied VALO on SOTA detectors:
– CenterPoint

• Feat. Ex. → 2D BB → 3D BB → DetHead

– VoxelNeXt[5]
• Feat. Ex. → 3D BB → Sparse DetHead

• Evaluated on NVIDIA Jetson AGX Xavier
– 512-core Volta iGPU
– 8-core ARM CPU
– 16 GBs of RAM

• nuScenes dataset
– Used 30 driving scenes each being 20 seconds
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[5] Y. Chen, et. al., "VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking," 2023 CVPR



Comparison With Baselines

• VALO on CenterPoint (voxel size = 75mm)

• Baseline CenterPoint with different voxel sizes:

– 75mm

– 100mm

– 200mm

• Tested for a range of deadlines

• Results are valid when deadline is met

• Results are nullified when deadline is missed
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Comparison With Baselines
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Comparison With Baselines
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Results on VoxelNeXt
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Conclusion

• In this work, we presented:

– A versatile scheduling framework for LiDAR object detection DNNs

– We implemented our method on CenterPoint and  VoxelNeXt and 
evaluated its performance on Jetson AGX Xavier

– Results show that our method significantly surpass baseline methods 
and provides a versatile solution for anytime perception for LiDAR

• GitHub Link: https://github.com/CSL-KU/VALO
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Thank You
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