

VALO: A Versatile Anytime Framework for LiDAR based Object Detection Deep Neural Networks

<u>Ahmet Soyyigit</u>¹, Shuochao Yao², Heechul Yun³

^{1,3} University of Kansas, Lawrence, KS

² George Mason University, Fairfax, VA

3D Object Detection

- Cameras, Radars, <u>LiDARs</u>...
- Deep Neural Networks (DNN) are state-of-the-art (SOTA) for LiDAR

Mean Latency on Jetson AGX Xavier

Favor Latency or Accuracy?

- Objects move while detection happens.
 - Predictions can be misaligned.
- Lower latency is favored in high misalignment scenario.

Favor Latency or Accuracy?

- Low misalignment scenario.
 - Higher latency is tolerable.
 - Higher accuracy is favored.

Favor Latency or Accuracy?

- Best DNN model is environment dependent.
 - One model does not fit all.

Can we dynamically reconfigure our object detector to make environment-dependent latency and accuracy trade-offs?

Anytime Algorithms

LiDAR Object Detection DNN as an Anytime Algorithm

- DNN's are not anytime by default.
- Possible Solution: Dynamically switching multiple DNNs
 - Memory overhead
 - Not suitable for edge
 - Train/fine-tune multiple DNNs
 - Might not have access to training pipeline

Goal

- Develop a versatile framework that can transform any single LiDAR object detection DNN into an anytime-capable one
 - So, it can trade-off latency and accuracy dynamically at runtime.
- Our previous work[4] has limitations
 - Modifies DNN architecture, enforces training
 - No trade-offs on 3D backbone
- We need a versatile solution
 - Minimal dependency on DNN architecture
 - Does not enforce training
 - Broadly applicable
 - Considers all important stages of the DNN

VALO: Versatile Anytime framework for LiDAR Object Detection

Anytime computing with <u>scheduling of input data</u>.

Region Scheduling

- Consider the input as a fixed number of vertical regions.
 - Skips empty regions by default.

Region Scheduling

- Select max num of regions that can meet the deadline.
- Follow round-robin order.

Regions To Select	Predicted WCET
3	80 ms
3, 4	115 ms
3, 4, 1	130 ms
3, 4, 1, 2	170 ms

Deadline: 140 ms

Selected regions: 3, 4, 1

► Last processed region

Region Scheduling

Baseline

VALO

- Post-processing time (e.g. Non-maximum suppression)
 - Can be considered constant

- Dense input processing time
 - Fixed for a given number of regions

- Sparse input processing time
 - Can we predict it from the number of input voxels?

Calculating E_S

- $V_{
 m 1}$ Input Voxels of Block 1
- SM Submanifold Convolution
- SP Sparse Convolution

- Layers in each block maintain same input size.
- Latency of each block is predictable for given $|V_1|$, $|V_2|$, $|V_3|$, $|V_4|$.
- We only know $|V_1|$ before execution.
- We utilize the prior values of $|V_2|$, $|V_3|$, $|V_4|$ for prediction.

Forecasting •

- Predict current object positions of previously detected objects
 - Buffer latest detections for each input region.
 - Forecast all buffered objects.
 - Runs in parallel.
 - Prioritize detections over forecasted objects.

Purple objects are forecasted

Baseline Detection Head

Optimized Detection Head

Evaluation

- Applied VALO on SOTA detectors:
 - CenterPoint
 - Feat. Ex. → 2D BB → 3D BB → DetHead
 - VoxelNeXt[5]
 - Feat. Ex. → 3D BB → Sparse DetHead
- Evaluated on NVIDIA Jetson AGX Xavier
 - 512-core Volta iGPU
 - 8-core ARM CPU
 - 16 GBs of RAM
- nuScenes dataset
 - Used 30 driving scenes each being 20 seconds

Comparison With Baselines

- VALO on CenterPoint (voxel size = 75mm)
- Baseline CenterPoint with different voxel sizes:
 - 75mm
 - 100mm
 - 200mm
- Tested for a range of deadlines
- Results are valid when deadline is met
- Results are nullified when deadline is missed

Comparison With Baselines

Comparison With Baselines

Results on VoxelNeXt

Conclusion

- In this work, we presented:
 - A versatile scheduling framework for LiDAR object detection DNNs
 - We implemented our method on CenterPoint and VoxelNeXt and evaluated its performance on Jetson AGX Xavier
 - Results show that our method significantly surpass baseline methods and provides a versatile solution for anytime perception for LiDAR
- GitHub Link: https://github.com/CSL-KU/VALO

Thank You

