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Abstract – Waveform agility introduces additional degrees of 
freedom to achieve distinct operational objectives. However, pulse-
to-pulse diversity does come at the expense of range sidelobe 
modulation (RSM), which may mask small targets in proximity to 
large clutter returns. Sophisticated waveform design or receive 
processing techniques can improve detection capabilities by 
incorporating prior or assumed knowledge. Here, we consider a 
waveform design approach that jointly optimizes a set of random 
FM waveforms to suppress RSM within a specified region of the 
delay-Doppler response otherwise known as the point-spread 
function. This approach likewise provides a complementary 
condition that is chosen for a region of delay and Doppler. Joint 
optimization of waveform sets also introduces the prospect of a 
sense-and-notch (in delay-Doppler) cognitive capability.  

Keywords– random frequency modulation (RFM), complementary 
waveforms, moving target indication, pulse agility, cognitive radar 

I. INTRODUCTION 
With the introduction of arbitrary waveform generation 

(AWG) capabilities, traditional frequency modulated (FM) 
waveform design comprising linear FM (LFM), hyperbolic FM 
(HFM) [1], and nonlinear FM (NLFM) [2], has expanded to 
include a variety of forms of random FM (RFM) waveforms [3]. 
The RFM notion greatly increases design degrees of freedom 
while maintaining a physically realizable structure that is 
amenable to high-power transmitters. Further, advances in 
high-performance processing allow for real-time design of 
modest time-bandwidth (TB) product waveforms that have 
complex modulation structures. This increased complexity is 
accompanied by a new realm of design potential, particularly 
for waveform sets collectively constructed for a coherent 
processing interval (CPI). 

In radar applications employing unique waveforms on a 
pulse-to-pulse basis (i.e. pulse/waveform agility), new 
capabilities can emerge due to expanded dimensionality (see 
[4]). Such uniqueness may include waveforms operating at 
different center frequencies [5], pulse widths [6], or 
phase/frequency modulation [3]. Of course, any radar operation 
is limited by the waveform TB aggregated over the CPI, receive 
signal-to-noise ratio (SNR), and estimation error in the form of 
correlation sidelobes. Pulse agility also introduces estimation 
error known as range-sidelobe modulation (RSM), resulting 
from inter-pulse correlation sidelobe dissimilarity that produces 
phase/amplitude variation across slow-time. While this effect is 
known to degrade standard clutter cancellation [7], various non-
adaptive receive processing algorithms have been proposed to 
alleviate the issue including least-squares mismatched filtering 

[8], complementary-on-receive mismatch filtering [9], and joint 
range-Doppler clutter cancellation approaches [10]. 

The impact of RSM can likewise be partially mitigated 
through waveform design by shaping the anticipated matched 
filter response (characterized by the autocorrelation) [11-14]. 
For instance, waveform sidelobe minimization reduces RSM 
but does not eliminate it [11]. In [12], information about the 
illuminated scene is used to shape the waveform autocorrelation 
to improve subsequent scene estimation. Further, knowledge of 
scene interference can be incorporated into waveform design to 
maximize the signal-to-interference-plus-noise ratio (SINR), 
accounting for correlation and interference error [13, 14]. 

Here, the waveforms forming a CPI are jointly optimized to 
minimize RSM within an unambiguous delay-Doppler region. 
The designated delay-Doppler region may encompass the entire 
space between 𝜏𝜏 ∈ (−𝑇𝑇PRI,𝑇𝑇PRI) and 𝑓𝑓D ∈ (−𝑓𝑓PRF/2, 𝑓𝑓PRF/2), 
for the uniform PRI denoted 𝑇𝑇PRI  and associated pulse 
repetition frequency (PRF) defined as 𝑓𝑓PRF = 1/𝑇𝑇PRI .  
Alternatively, the available waveform degrees of freedom can 
be focused into a sub-region therein. Doing so provides the 
capability to better estimate a delay-Doppler region in the 
presence of expected large clutter, akin to [12], but here 
deterministically chosen and optimized in joint delay-Doppler. 
This optimization procedure is a natural extension of 
incorporating Doppler tolerance into complementary FM 
waveforms explored in [15]. While the intention of this work is 
to summarize the waveform design, further extension for use in 
conjunction with a cognitive engine warrants exploration [16, 
17]. 

II. FM SIGNAL MODEL 
Frequency modulated (FM) waveforms possess two 

desirable characteristics: constant amplitude and continuous 
phase. These attributes are essential for high-power radar 
transmission to accomodate unavoidable distortions cause by 
amplification. Consider the unit amplitude FM waveform of 
pulse width 𝑇𝑇 and time support [0,𝑇𝑇]: 

 𝑠𝑠(𝑡𝑡) = 𝑒𝑒𝑗𝑗𝑗𝑗(𝑡𝑡) ,  (1) 
where 𝜙𝜙(𝑡𝑡) is an instantaneous phase function that varies over 
the duration of the pulse width. The first derivative of the 
instantaneous phase function  

 
𝜔𝜔(𝑡𝑡) =

𝜙𝜙(𝑡𝑡)
𝑑𝑑𝑑𝑑

 (2) 

represents the time-varying radial frequency that provides the 
FM structure. Discretizing 𝑠𝑠(𝑡𝑡) at some sampling frequency 𝐹𝐹s 
provides the discretized representation 



 𝐬𝐬 = 𝑒𝑒𝑗𝑗𝛟𝛟 = �𝑠𝑠(0) 𝑠𝑠(𝑇𝑇𝑠𝑠) … 𝑠𝑠�(𝑀𝑀 − 1)𝑇𝑇𝑠𝑠��
𝑇𝑇 ,  (3) 

where 𝛟𝛟 ∈ ℝ𝑀𝑀×1  contains samples of 𝜙𝜙(𝑡𝑡)  and 𝑇𝑇s = 1/𝐹𝐹s  is 
the sample period. The waveform is often designed with a 
degree of “oversampling” relative to a meaningful bandwidth 
definition, thus enabling spectral containment. Often, the 
occupied bandwidth is measured in terms of an energy 
efficiency (e.g. 98% percent energy) or a threshold relative to 
peak energy (e.g. 6-dB bandwidth) [18]. Here, we use the 
Gabor/RMS bandwidth from [19], which is 

 
ℬ2 =

1
2𝜋𝜋𝜋𝜋

� 𝜉𝜉2|𝑆𝑆(𝜉𝜉)|2𝑑𝑑𝑑𝑑
∞

−∞
=

1
𝑇𝑇
� 𝜔𝜔2(𝑡𝑡)𝑑𝑑𝑑𝑑
∞

−∞
 (4) 

for 𝜉𝜉  a radial frequency value, 𝑆𝑆(𝜉𝜉) the Fourier transform of 
𝑠𝑠(𝑡𝑡) (scaled to preserve total energy), and the right-hand side of 
(4) is true due to the constant envelope of 𝑠𝑠(𝑡𝑡). Therefore, the 
RMS bandwidth is a weighted average of the power spectrum 
|𝑆𝑆(𝜉𝜉)|2, with an equivalent temporal form expressed in terms 
of the waveform instantaneous frequencies. The relationship 
between instantaneous frequency and the accumulated RMS 
bandwidth is further developed in [20, 21]. An important 
distinction is emphasized upon sampling 𝜙𝜙(𝑡𝑡) : spectral 
containment of 𝑠𝑠(𝑡𝑡)  implies that the relative phase-change 
between adjacent samples of 𝛟𝛟 is small (thus preventing 𝜔𝜔(𝑡𝑡) 
from becoming excessively large).  

Here, the first-order polyphase-coded FM (PCFM) quasi-
basis is selected, which has parameters representing 
instantaneous radial-frequencies that are imposed onto the 
waveform by a selected frequency shaping filter 𝑔𝑔(𝑡𝑡) . The 
instantaneous frequency function of PCFM is [24] 

 
𝜔𝜔PCFM(𝑡𝑡) = � 𝛼𝛼𝑛𝑛

𝑁𝑁−1

𝑛𝑛=0
𝑔𝑔�𝑡𝑡 − 𝑛𝑛𝑇𝑇p� (5) 

where 𝑇𝑇p = 𝑇𝑇/𝑁𝑁 is the PCFM parameter interval (representing 
the “on-time” of each parameter) such that the instantaneous 
phase function becomes 

 
𝜙𝜙PCFM(𝑡𝑡) = � 𝛼𝛼𝑛𝑛

𝑁𝑁−1

𝑛𝑛=0
𝑏𝑏�𝑡𝑡 − 𝑛𝑛𝑇𝑇p� (6) 

where 
 

𝑏𝑏(𝑡𝑡) = � 𝑔𝑔(𝑢𝑢)𝑑𝑑𝑑𝑑 .
𝑡𝑡

0
 (7) 

This transformation explicitly limits the instantaneous phase 
transition across parameter sub-intervals, which implicitly 
imposes a degree of spectral containment. Here, the frequency-
shaping filter is chosen to be rectangular over �0,𝑇𝑇p� and scaled 
by 1/𝑇𝑇p  to integrate to unity. The phase 𝜙𝜙PCFM(𝑡𝑡)  is 
consequently shaped by a linear ramp 

 
𝑏𝑏(𝑡𝑡) = �

0 𝑡𝑡 < 0
𝑡𝑡/𝑇𝑇p 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇p

1 𝑇𝑇p < 𝑡𝑡
. (8) 

The PCFM transform, when discretized, can be represented via 
the matrix-vector form 

                                       𝛟𝛟 = 𝐁𝐁𝐁𝐁, (9) 
where the 𝑛𝑛𝑡𝑡ℎ column of 𝐁𝐁 ∈ ℝ𝑀𝑀×𝑁𝑁 is a discretized version of 
𝑏𝑏�𝑡𝑡 − 𝑛𝑛𝑇𝑇p�, and 𝐱𝐱 = [𝛼𝛼0 … 𝛼𝛼𝑁𝑁−1]𝑇𝑇 is the PCFM parameter 
vector that contains instantaneous radial-frequency values.  

For first-order PCFM with a rectangular shaping filter, it can 
be shown that the RMS bandwidth in (4) simplifies to  
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‖𝐱𝐱‖22 , (10) 

which is now a function of only the PCFM parameters, and for 
‖∙‖2 the Euclidean norm. 

By the original definition of PCFM, all parameters 𝛼𝛼𝑛𝑛 must 
have a magnitude |𝛼𝛼𝑛𝑛| ≤ 𝜋𝜋 . This requirement subsequently 
enforces that the maximum phase transition be 𝜋𝜋𝜋𝜋/𝑀𝑀  so 𝑁𝑁 
approximates the time-bandwidth product 𝑇𝑇𝑇𝑇 . A bounded 
activation function is a simple way to meet this requirement. 
Consequently, consider the bounding function 

 𝐱𝐱 =
𝑀𝑀
𝑁𝑁
Δϕ cos 𝐱𝐱� (11) 

as a simple means to limit the sample-to-sample phase 
transition, where Δϕ  represents the maximum permittable 
value, thereby now effectively setting 𝑇𝑇𝑇𝑇.  This definition 
likewise subsumes the previously explored “over-coded” and 
“over-phased” PCFM form [25] that increases the number of 
quasi-basis functions and the maximum permittable phase 
change, respectively, each uniquely impacting the waveform 
design space. Special care should be taken when allowing the 
maximum permittable phase transition to extend beyond the 
originally set limit of 𝜋𝜋𝜋𝜋/𝑀𝑀  (i.e., over-phasing) which 
inevitably inflates the waveform bandwidth ℬ. 

III. PULSE-DOPPLER PERFORMANCE METRICS 
For standard pulse compression with the matched filter, a 

waveform’s autocorrelation provides the expected delay-
response from a single point scatterer as 

 
𝑟𝑟(𝜏𝜏) = � 𝑠𝑠(𝑡𝑡)𝑠𝑠∗(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑

∞

−∞
 . (12) 

Autocorrelation sidelobes are a form of self-interference that 
obstructs detectability of small scatterers in the presence of 
large scatterers. Sidelobes are typically measured by the 
integrated sidelobe level (ISL) and peak sidelobe level (PSL). 
The former captures the energy ratio between the integrated 
sidelobes and mainlobe, while the latter captures the energy 
ratio of the peak sidelobe to the mainlobe peak. Both are 
subsumed by the Generalized-ISL metric defined as [26] 

 
GISL = �

∫ |𝑟𝑟(𝜏𝜏)|𝓅𝓅 
ΩSL

∫ |𝑟𝑟(𝜏𝜏)|𝓅𝓅 
ΩML

�
2/𝓅𝓅

 (13) 

where 𝓅𝓅 = 2 denotes ISL and PSL corresponds to 𝓅𝓅 → ∞, and 
with ΩSL the delay values of the sidelobes region and ΩML the 
delay interval of the mainlobe. The specified ΩML establishes 
an implicit degree of spectral containment since bandwidth is 
inversely proportional to mainlobe width [27]. Discretization of 
the autocorrelation is achieved through the Fourier relationship 
with power spectral density (PSD) via 

 𝐫𝐫 = 𝐀𝐀𝐻𝐻�𝐀𝐀�𝐬𝐬�2, (14) 
where 𝐀𝐀� ∈ ℂ2𝑀𝑀−1×𝑀𝑀 is a truncated (or zero-padded) version of 
DFT matrix 𝐀𝐀 ∈ ℂ2𝑀𝑀−1×2𝑀𝑀−1,  which can be efficiently 
computed via FFT. Thus, the discretized GISL is 



 
GISL =

‖𝐰𝐰SL ⊙ 𝐫𝐫‖𝓅𝓅2

‖𝐰𝐰ML ⊙ 𝐫𝐫‖𝓅𝓅2
 (15) 

for 𝐰𝐰SL,𝐰𝐰ML ∈ ℝ2𝑀𝑀−1×1 binary valued sidelobe and mainlobe 
selector vectors, and ‖∙‖𝓅𝓅 is the 𝓅𝓅-norm.  

Optimization on a per-waveform basis, via power spectrum 
or autocorrelation shaping [3, 11], can minimize RSM that 
arises for nonrepeating waveforms – but never completely 
eliminates sidelobes due to a conservation of ambiguity [28]. 
Standard pulse-Doppler processing applies the matched filter in 
fast-time and Doppler estimation in slow-time via the Fourier 
transform, resulting in a “point-spread” function (PSF) 

 
Ψ(𝜏𝜏,𝜃𝜃) = � � 𝑠𝑠𝑝𝑝(𝑡𝑡)𝑠𝑠𝑝𝑝∗(𝑡𝑡 + 𝜏𝜏)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑

∞

−∞

𝑃𝑃−1

𝑝𝑝=0
 (16) 

in which 𝑠𝑠𝑝𝑝(𝑡𝑡)  represents the 𝑝𝑝th  pulse (of 𝑃𝑃 ) and 𝜃𝜃  is a 
normalized Doppler value within a 2𝜋𝜋  span. The PSF 
represents the response from a single stationary point scatterer 
(i.e., the impulse response of the CPI) as a function of delay and 
Doppler [29]. Under a “stop and hop” assumption, the GISL 
definition for delay-only assessment can be extended to delay-
Doppler through consideration of the PSF, expressed as 

 
𝐽𝐽(ΩSL;𝓅𝓅) = �

∬ |Ψ(𝜏𝜏,𝜃𝜃)|𝓅𝓅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
ΩSL

∬ |Ψ(𝜏𝜏,𝜃𝜃)|𝓅𝓅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
ΩML

�
2/𝓅𝓅

 , (17) 

which realizes a two-dimensional measure according to 
specified delay-Doppler sidelobe region ΩSL  and fixed 
mainlobe region ΩML . Now collect the sequence of 𝑃𝑃 PCFM 
waveforms within a CPI as 

                    𝐒𝐒 = 𝑒𝑒𝑗𝑗𝐁𝐁𝐁𝐁 = [𝐬𝐬0 … 𝐬𝐬𝑃𝑃−1], (18) 
where 𝐬𝐬𝑝𝑝  is parameterized by 𝐱𝐱𝑝𝑝  that is the 𝑝𝑝𝑡𝑡ℎ  column of 
PCFM parameter matrix 𝐗𝐗. Discretization of the PSF yields  

                               𝚿𝚿 = 𝐀𝐀𝐻𝐻�𝐀𝐀�𝐒𝐒�2𝐅𝐅, (19) 

where 𝐅𝐅 ∈ ℂ𝑃𝑃×𝑈𝑈  is a zero-padded DFT matrix for Doppler 
processing, 𝑈𝑈  is the number of discretized frequency points, 
and 𝑈𝑈 ≥ 2𝑃𝑃 − 1  to realize sufficient Doppler 
visibility/granularity. The P-pulse discretized delay-Doppler 
GISL is subsequently expressed as 

 
𝐽𝐽(ΩSL;𝓅𝓅) =

‖𝐖𝐖SL ⊙𝚿𝚿‖𝓅𝓅2

‖𝐖𝐖ML ⊙𝚿𝚿‖𝓅𝓅2
  (20) 

for 𝐖𝐖SL,𝐖𝐖ML ∈ ℝ2𝑀𝑀−1×𝑈𝑈 now binary-valued selector matrices 
for the delay-Doppler sidelobe and mainlobe regions, 
respectively.  

IV. WAVEFORM OPTIMIZIATION 
Non-convex surfaces require iterative solutions to find local 

minima. Now consider the gradient matrix operator  
 𝜕𝜕

𝜕𝜕𝐗𝐗
= [∇𝐱𝐱0 … ∇𝐱𝐱𝑃𝑃−1] (21) 

where  
 

∇𝐱𝐱𝑝𝑝= �
𝜕𝜕

𝜕𝜕𝛼𝛼𝑝𝑝,0
…

𝜕𝜕
𝜕𝜕𝛼𝛼𝑝𝑝,𝑁𝑁−1

�
𝑇𝑇

 (22) 

is the gradient vector operator. Leveraging the discretized 
representations above, application of (22) to (21) yields the 
gradient matrix  

𝜕𝜕𝜕𝜕
𝜕𝜕𝐗𝐗�

= −4𝐽𝐽
𝑀𝑀
𝑁𝑁 Δϕ sin�𝐗𝐗��⊙ 𝐁𝐁𝑇𝑇 

ℑ�𝐒𝐒∗ ⊙ 𝐀𝐀�𝐻𝐻��𝐀𝐀�𝐒𝐒�⊙ ℜ{𝐀𝐀(𝐖𝐖Δ ⊙ |𝚿𝚿|𝓅𝓅−2 ⊙𝚿𝚿)𝐅𝐅𝐻𝐻}�� 
(23) 

where ℜ{∙}, ℑ{∙} extract the real and imaginary components, 𝐗𝐗� 
reflects the same parameter limitation from (11) and 

 𝐖𝐖Δ =
𝐖𝐖SL

‖𝐖𝐖SL ⊙𝚿𝚿‖𝓅𝓅
𝓅𝓅 −

𝐖𝐖ML

‖𝐖𝐖ML ⊙𝚿𝚿‖𝓅𝓅
𝓅𝓅  . (24) 

Each element of the waveform matrix 𝐒𝐒  is updated via the 
gradient-descent parameter update 

 𝐗𝐗�(𝑖𝑖+1) = 𝐗𝐗�(𝑖𝑖) + 𝜇𝜇(𝑖𝑖)𝐃𝐃(𝑖𝑖), (25) 

where 𝐃𝐃(𝑖𝑖) is a descent search direction at the 𝑖𝑖𝑡𝑡ℎ iteration, and 
𝜇𝜇(𝑖𝑖) is a positive step-size selected to minimize the objective 
along this path. Determining a step-size and search direction at 
each iteration requires balancing convergence rate with 
acceptable computational complexity (see [30-32]). The 
minimization process continues until some prescribed 
maximum iteration count, or until the relative change in the 
function value is below a predefined threshold, indicating that 
a local minimum is found. 

V. SIMULATED RESULTS 
A total of 𝑃𝑃 = 250 PCFM waveforms were each uniquely 

initialized with 𝑁𝑁 = 64  random and uniformly distributed 
radial frequency values, generating a collection of RFM 
waveforms. Each waveform has a pulse width 𝑇𝑇 = 1.28𝜇𝜇𝜇𝜇 and 
is discretized at 𝐹𝐹𝑠𝑠 = 200𝑀𝑀𝑀𝑀𝑀𝑀 , for a resulting waveform 
dimensionality of 𝑀𝑀 = 256. The maximum permitted phase-
change is set to Δ𝜙𝜙 = 𝜋𝜋/4,  corresponding to a frequency 
oversampling of 4, so each PCFM parameter is accordingly 
bounded between ±𝜋𝜋. The waveform set is optimized jointly 
using the approach outlined above, leveraging the quasi-
Newton based L-BFGS optimizer [32], with stopping criteria 
set to a maximum of 105 iterations, an objective tolerance of 
10−9, and 𝓅𝓅 = 2. The initial waveforms correspond to the PSF 
depicted in Fig 1. Because every waveform is unique, the 
distinct range-sidelobes across slow-time incur the observed 
RSM pedestal that spreads energy across all Doppler. 

 
Fig 1. PSF resulting from initial PCFM waveforms 
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To highlight the design potential for this approach, two 
different sidelobe regions are considered. The first design (see 
Fig. 2) selects ΩSL to inscribe the lettering ‘KU’ in the delay-
Doppler plane.  The inscription is defined at positive delays and 
positive/negative Doppler, which therefore becomes reflected 
at negative delays and negative/positive Doppler, respectively, 
highlighting the conjugate symmetric relationship of (16).  
Comparing Fig 1 and Fig. 2, the former represents an  
uninformed design, while the latter illustrates precise delay-
Doppler sidelobe control.  

 
Fig. 2. PSF resulting from jointly optimized PCFM waveforms, with 
ΩSL selected to inscribe the lettering ‘KU’ (not useful, but illustrates 
precise delay/Doppler ambiguity control) 

Now consider the case of ΩSL  comprising all delay 
(excluding the mainlobe resolution width) and a band of 
Doppler associated with radial shifts of |𝜃𝜃| ≤ 𝜋𝜋/2, as shown in 
Fig. 3. Here, the set of jointly designed waveforms combine in 
the PSF to establish a complementary cancellation condition, 
akin to [15]. Now, the sidelobe energy within the prescribed 
ΩSL has been largely relocated to outside the desired interval 
(i.e., to |𝜃𝜃| > 𝜋𝜋/2). Consequently, a notional cognitive mode 
could conceivably shape the PSF as needed if sufficient 
knowledge of the scattering environment were available.  

 
Fig. 3. PSF resulting from jointly optimized PCFM waveforms, with 
ΩSL selected for all delay and Doppler |𝜃𝜃| ≤ 𝜋𝜋/2  

The average PSDs of the initial and optimized waveforms 
are shown in Fig. 4, where the optimized set remains largely 
unchanged (in aggregate) from the initial waveforms. The RMS 
bandwidth calculated from (10) represents an expansion of only 
2.8%, imparted by the slightly higher (~1 dB) power measured 
at the maximum frequency, which corresponds to the highest 
weight in (4). This result is in part due to the phase transition 
limitation from (11), which is confirmed in Fig. 5 where the 
instantaneous phase-change expands to (but remains contained 
in) the set limits of ±𝜋𝜋/4. Indeed, since 𝑁𝑁  was selected to 
approximate the desired time-bandwidth (with appropriate 
phase-change limits), a spectral constraint is not necessary 
during the optimization process for generating these 
waveforms. 

 
Fig. 4. Mean power-spectra of initial and optimized waveforms 

 
Fig. 5. Instantaneous phase-change of randomly-selected optimized 
PCFM waveforms 

Examination of (20) as a function of gradient-descent 
iterations reveals a monotonic decrease in total sidelobe energy 
(see Fig. 6). The optimization is nearly converged after 103 
iterations, suppressing the ISL by 17 dB, with the remaining 
74 × 103  iterations improving by an additional 3 dB until a 
stopping criterion is met. While unique initializations and 
selections of ΩSL lead to distinct solutions, this overall trend is 
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consistent across all cases, with most functional decrease 
occurring rapidly within the initial iterations. 

 
Fig. 6. Objective function value vs iteration index; for case of ΩSL 
selected for all delay and Doppler |𝜃𝜃| ≤ 𝜋𝜋/2 

VI. OPEN-AIR RESULTS 
To validate practical design amenability, the same three 𝑃𝑃 =

250 randomly-initialized and optimized waveform sets were 
transmitted in an open-air environment consisting of multiple 
moving vehicles. The waveforms were up-converted to a 
center-frequency of 𝑓𝑓c = 3.35  GHz and emitted at a pulse-
repetition frequency of PRF = 2 kHz. On receive, the signals 
were pulse-compressed with the matched-filter, followed by 
DFT processing in slow-time. To enable adequate comparison 
between the range-Doppler responses, the three CPIs were 
concatenated into a single emission, thereby measuring nearly 
identical scenes from case to case. 

First, consider the open-air range-Doppler response from 
the initial random FM waveforms (Fig. 7), in which the 
dominant RSM from stationary clutter dominates much of the 
visible scene, especially at low range due to direct-path leakage 
from transmitter to receiver. Recall that traditional clutter-
cancellation techniques lack the degrees-of-freedom necessary 
to sufficiently suppress RSM.  

Now examine (Fig. 8) the open-air range-Doppler response 
resulting from the optimized FM waveforms in Fig. 2, which 
illustrates precise control of the PSF. Clearly, the range-
Doppler spread of energy in this case is not conducive to 
uncover movers, but the inscribed ‘KU’ that arises from 
standard pulse compression and Doppler processing highlights 
the potential for precise control via waveform optimization. 

Finally, the response in Fig. 9 is obtained from the 
optimized FM waveforms of Fig. 3, which provides practical 
utility by pushing sidelobe energy outside the Doppler band of 
interest. Here, the impact of clutter is greatly reduced, with 
many small movers being revealed, while only standard pulse 
compression and Doppler processing are employed. 

 
Fig. 7. Range-Doppler response of initial random FM waveforms, with 
zoomed inset highlighting the location of movers 

 
Fig. 8. Range-Doppler response of optimized waveforms, for ΩSL 
selected to inscribe the lettering ‘KU’ 

 
Fig. 9. Range-Doppler response of optimized waveforms, for ΩSL 
selected for all delay and Doppler |𝜃𝜃| ≤ 𝜋𝜋/2 

 



VII. CONCLUSIONS 
The joint optimization of a set of random FM waveforms is 

developed to precisely control the delay-Doppler sidelobes of 
the point-spread function (PSF). Gradient-based minimization 
of a delay-Doppler GISL objective function enables shaping the 
range sidelobe modulation (RSM) that results from using non-
repeating pulses. The approach subsumes the previously 
demonstrated Doppler-generalized complementary-FM [15], 
enabling robust sidelobe suppression in the presence of slow-
time Doppler. With sufficient scattering environment 
knowledge, such an approach could conceivably enable new 
cognitive implementations. Simulated results are shown to 
provide precise control of RSM, which is in turn confirmed 
through open-air experimentation.  
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