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For care of chronic diseases (e.g., depression, diabetes, hypertension), it is critical to identify effective treat-

ment pathways that aim to promptly update the medication following the change of patient state and disease

progression. This task is challenging because the optimal treatment pathway for each patient needs to be

personalized due to the significant heterogeneity among individuals. Therefore, it is naturally promising to

investigate how to use the abundant electronic health records to recommend effective and safe prescriptions.

However, prescription recommendation needs to consider multiple aspects of life-critical evidence, such as

the information relevance in terms of medical concepts, the health condition in terms of diagnosis history,

and the further constraint in terms of side information (e.g., patient demographics and drug side effects). To

this end, in this article, we propose a novel prescription recommendation framework named OntoPath to

predict the next drug in disease treatment pathways, by building an ontology-aware hierarchical-attention

model that integrates multiple medical evidence from domain knowledge guidance, medical history profil-

ing, and side information utilization. Specifically, our method can be characterized from three aspects: (1)

by incorporating the longitudinal diagnosis history, we enrich the profiling of patients in terms of compre-

hensive health conditions, which can largely influence a drug’s outcome on individual patients; (2) using

the hierarchical disease and drug ontology structures, we are able to model the domain-specific relevance

between patients and drugs at multiple levels of granularity and achieve in-depth collaborative filtering; (3)

we introduce a pre-training stage to enhance the discriminativeness of network representations, which helps

us obtain a premium model initialization to further boost the final recommendation training. We perform ex-

tensive experiments on a large-scale depression cohort with over 37,000 patients from a real-world medical

claims database. The quantitative and qualitative results demonstrate the effectiveness of OntoPath through

the consistent outperformance over state-of-the-art prescription recommendation baselines and the interpre-

tation of model mechanism in case studies.
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informatics;
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1 INTRODUCTION

Treatment pathway, which refers to a series of prescribing decisions that tailor the medicine for
patients over the course of illness [19], plays a critical role in improving the quality and efficiency
of patient care. For patients with chronic diseases (e.g., depression, diabetes, hypertension) who
generally have a complex pathophysiology during years even decades, it is important to iden-
tify a treatment pathway during the journey of patients so that the prescription can be adjusted
according to a patient’s progression and the disease can be managed in a timely, accurate, and
cost-effective manner. However, the treatment pathway can vary from patient to patient due to
the wide existence of patient heterogeneity. Taking the treatment pathway of depression patients
as an example, Figure 1 shows the transitions between the top-10 most frequent antidepressant
drugs given to a 37,000 depression cohort, from the first-line treatment to the third-line treatment,
and we can see that there is not a dominant treatment pathway working for everyone. Therefore,
the prescription of drugs in a patient’s treatment pathway has to to be personalized by considering
a variety of real-world evidence [35].

With the ubiquity of the electronic health records (EHRs), creating an intelligent decision
support tool for finding treatment pathway has become feasible. Personalized prescription
recommendation, which profiles the patient characteristics based on a comprehensive set of
medical related evidence such as domain knowledge, medical history, and side information
(e.g., patient demographics and drug side effects), has the potential to accurately predict the

Fig. 1. Treatment pathways of a large-scale depression cohort. The three columns from left to right show
the ratio of the top-10 antidepressant prescriptions used for the first-line treatment until the third-line
treatment. The link between any two nodes shows the volume of patients switching the prescription from
one treatment to another. We can see that since no treatment pathway fits for all the patients, the choice
of next treatment has to be personalized.
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effectiveness of candidate prescriptions for individual patients. Although literature [37, 50] has
shown the promising effectiveness of analyzing longitudinal EHR for prescription prediction,
finding prescriptions in treatment pathways still has several unique challenges to tackle. First,
rather than predicting the repeated drug observations in doctor visits due to short-term or general
symptoms or because of prescription refills, treatment pathways demand a recommendation
of the prescriptions that were not given before, and the medication transition is driven by a
long-term major disease progression. Second, instead of using a one-size-fits-all model to predict
prescriptions for all patients, recommendation for treatment pathways needs to build a personal-
ized model that can profile patients with unique drug adoption, medical history, and demographic
information. Last, as a complex decision-making process, we need a comprehensive framework
to not only analyze multiple sources of medical evidence but also learn an hierarchical matching
function to model the in-depth relevance between patients and drugs. Keeping these challenges
in mind, it is appealing to study the three following goals to build the personalized and evidence-
based prescription recommendation framework for treatment pathways of chronic disease
patients.
First, as the high-stakes decision-making problem, the prediction task of patient-drug effec-

tiveness needs to understand the prescriptions from a domain knowledge perspective. Therefore,
the interaction of patient-drug pair can be seen as the interaction between the disease characters
from the side of patients and ingredient functions from the side of drugs. To incorporate the
domain-specific knowledge into the recommendation model, we utilize the ontological knowledge
base regarding human diseases and drugs ingredients to provide the background concepts of
EHR observations and the structural relationship among them. For example, built to classify the
concepts of disease condition in coarse-to-fine granularity, disease ontology such as International
Classification of Diseases (ICD) is widely used to classify the conditions of different diseases [8].
Similarly, drug ontology such as Anatomical Therapeutic Chemical (ATC) serves as an impor-
tant knowledge base to classify the drug ingredients and functions. As shown in Figure 2, when
doctors are considering a drug to treat a given medical condition, they would need to know the
domain concepts of the disease and the drug and then decide if the two would match. For example,
in ICD-9 ontology, the conditions of Rheumatoid arthritis is first a connective tissue problem at the
top level, then it is described as a joint disorder with inflammatory symptoms at the finer levels of
concept. Similarly, for the ingredients of Dexibuprofen in ATC ontology, it is first a drug targeting
at musculo-skeletal system. Then at finer levels of concept, it has the anti-inflammatory function,
with non-steroids and propionic characteristics in ingredients. By incorporating these ontology
concepts, we are able to develop the model that mimics how medical practitioners make decisions
in matching a patient with a drug using domain-specific knowledge. In our work, the use of
ontology bring several advantages in drug recommendation: (1) the hierarchical domain-specific
concepts provide a natural way to enrich the representation of patients and drugs; (2) data sparsity
issue of rarely appearing information (e.g., rare diseases) can be alleviated by relating them to
more generally existing concepts; and (3) multiple levels of knowledge provide the model with
a flexibility to choose the most relevant information when considering different patient-drug
cases. For example, in Figure 2, considering the Inflammatory concept of Rheumatoid arthritis,
the most relevant information regarding the treatment drug Dexibuprofen is the concept of
Anti-inflammatory.
Second, as a critical step to achieve evidence-based drug recommendation, the profiling of pa-

tients should comprehensively capture the longitudinal health conditions from the long-term his-
tory in EHR. In most of conventional recommendation use cases (e.g., E-commerce), user profiling
can be built by solely looking at the item adoption in history (e.g., what did a user buy in the
past define the preference of the user). However, in life-critical prescription decisions, choosing
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Fig. 2. Illustration of International Classification of Diseases (ICD-9) ontology for diagnosis and Anatomical
Therapeutic Chemical (ATC) ontology for drugs. For each diagnosis or drug, we can extract a unique ontology
path (Onto-Path) consisting of ontology concepts from the root to the leaf levels of Onto-DAG. The Onto-
Path will be used to model the domain-specific interactions of patient-drug pairs.

a drug not only depends on the therapeutic function of the drug specialized for a particular dis-
ease but also relies on the personal health state of the patient, like how the disease progresses in
the past, and what comorbidities the patient is having in the meantime. Therefore, in prescription
recommendation, the medical history with temporal information should be carefully analyzed in
the patient profiling. As illustrated in Figure 3 showing the medical history of a sample patient, the
longitudinal diagnosis codes indicate the health characteristics of the patient, such as the progres-
sion of depression diseases (e.g., Bipolar) and the accompanying comorbidities (e.g., Hypertension).
An important job of the recommendation model is to summarize the long-term diagnosis history
of each patient and pay attention to the key diagnosis, which can largely decide the prescription
outcomes. As a result, by incorporating the longitudinal diagnosis into patient profiling, we are
able to create more discriminative patient representations. Therefore, we are more capable of cap-
turing the important relationship between patient states and drugs, and ultimately, it can help the
recommendation model to be more trustworthy in practical usage. To this end, how to integrate
the temporal diagnosis learning into the patient profiling forms the second goal to be tackled.
Third, from the perspective of optimization, training a recommendation model has typically

been treated as a supervised task to predict the observation of a prescription. Although it is an
effective way of making the model successful on predicting the recommendation labels, relying
on this sole objective may leave the patient or drug representations suboptimal in terms of the
discriminativeness in themedical concept space (which is not the primary goal of recommendation
classification). This lack of training on representation will ultimately constrain the generalization
of recommendationmodel on the data we have not seen before. From this perspective, if we rethink
the recommendation as a matching problem where we would like to see how “close” a patient is
to a drug, we can alternatively optimize the recommendation model to represent the relevance
of patient-drug pairs as the distance in medical concept embedding space, and use the resulting
parameters as a refined initialization for the final recommendation training. With this goal in
mind, we propose to adopt an additional self-supervised contrastive learning objective in a pre-
training stage for our model, aiming at encoding the medical proximity in the patient and drug
representations, for boosting the performance at the final classification training stage for drug
recommendation.
Motivated by the aforementioned goals, in this article, we propose a multi-evidence prescrip-

tion recommendation framework that aims to predict the next drugs in treatment pathways for

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 99. Publication date: April 2023.



Ontology-aware Prescription Recommendation in Treatment Pathways 99:5

Fig. 3. Longitudinal diagnosis history of an example depression patient. To profile the health condition of
patients, the recommendation model needs to summarize the long-term history and focus on the key diag-
nosis, which can largely influence the outcomes, such as the progression indicators (marked with ∗) and the
comorbidities (marked with �).

chronic diseases. In this framework, we build a novel collaborative filtering-based recommenda-
tion model that simultaneously incorporates evidence from the hierarchical concepts in medical
ontology, the longitudinal diagnosis history in EHR, and the important side information of patient
demographics and drug side effects. Specifically, we first adopt a demographic-aware self-attention
network (i.e., Transformer) to summarize patient health conditions based on longitudinal diagno-
sis history. To distinguish the key conditions that dominate patient states, we encode each diagno-
sis by its contextual importance, and decodes the entire diagnosis sequences into the aggregated
patient embeddings using their demographic information as query weights. Second, to model a
domain-specific in-depth interaction for each patient-drug pair, we utilize a dual-recurrent neu-
ral network (RNN) network to encode hierarchical ontology concepts and concept structures
for patients and drugs, respectively, and use a co-attention with max pooling network to model
their level-to-level ontology concept interactions. Third, we adopt the contrastive learning using
a self-supervised objective function to pre-train the model for discriminative representation of in-
formation. With the pre-trained parameters regarding patients and drugs, we obtain a premium
initialization of the network to boost the final optimization of recommendation task. To make
the recommendation score more comprehensive, we consider the patients-drugs prediction in two
parts—the therapeutic relevance through drug function, and the safe relevance through drug side
effects. Eventually, all the sub-components mentioned above are integrated as a whole model that
is trained in an end-to-end manner.
In evaluation, we validate the proposed OntoPath prescription recommendation model through

extensive experiments on a large-scale depression patient cohort extracted from a real-world med-
ical claims database (i.e., MarketScan). The results show that OntoPath consistently outperforms
baseline models by a significant margin and demonstrate the effectiveness of each model sub-
component. Furthermore, we conduct a qualitative study to show that the attention mechanism in
our model is able to recover clinically meaningful insights, which enable the explainability char-
acter of the proposed framework.

2 PROBLEM FORMULATION

We first introduce two key concepts and then formulate our prescription recommendation
problem.

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 99. Publication date: April 2023.
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Table 1. Mathematical Notations

Symbol Description

u, i , d Index for patients, drugs, or diagnosis

c ∈ Gicd, a ∈ Gatc Concept node c in ICD-9 Onto-DAG, or concept node a in ATC Onto-DAG

Micd ,Matc Depth of ICD-9, or ATC Onto-DAGs

P (d ) = {c1, . . . , cMicd
} Onto-Path of diagnosis d consisting of ICD-9 concept nodes

P (i ) = {a1, . . . ,aMatc
} Onto-Path of drug i consisting of ATC concept nodes

o(u ) , e(i ) Demographic vector of patient u, or side effect vector of drug i

V
(u )
z = {v (u )

z1 , . . . ,v
(u )
zMicd

} Hierarchical embedding of patient u consisting ofMicd vectors

V
(i )
a = {v (i )

a1 , . . .v
(i )
aMatc

} Hierarchical embedding of drug i consisting ofMatc vectors

s (u ) , s (i ) Aggregated embedding of patient or drug after hierarchical interaction

Definition 1 (Onto-DAG). An Ontology Directed Acyclic Graph (Onto-DAG) G is a hierarchi-
cal structure to organize medical concepts with different granularity. In an Onto-DAG, each leaf
node usually represents a specific medical code such as a disease diagnosis or a drug ingredient,
each internal node usually represents a classification concept to categorize descendant nodes, and
each directed edge indicates a patient-to-child relationship where parent nodes provide more gen-
eral classification and child nodes provide more specific classification.

Definition 2 (Onto-Path). In an Onto-DAG G, every diagnosis or drug can be represented by a
unique Ontology Path (Onto-Path) P, which is a sequence of ontology concepts that traverses
through every level of G from root to leaf, starting from the most general classification concept
and ending at the most specific code as shown in Figure 2. For instance, a drug i’s Onto-Path can

be represented as P (i ) = a (i )1 → a (i )2 → · · · → a (i )
Matc

, where a (i )m means the ATC concept of drug i
on levelm in ATC Onto-DAG Gatc, andMatc means the depth of Gatc.

Problem Definition. Suppose we have a set of patients u ∈ U , a set of drugs i ∈ I, and the

observed prescriptions of patient-drug pairs y (u,i ) . Meanwhile, we have a set of diagnosis d ∈ D,
and each patient u’s medical history can be represented as a sequence of unique diagnosis codes

{d (u )
1 , . . . ,d

(u )
T
}, where diagnosis are ordered by their earliest appearance time t for patient u. In

addition, we have two Onto-DAGs: Gatc of ATC ontology shows the therapeutic concepts of active
ingredients of drugs, and Gicd of ICD-9 ontology shows the diagnostic concepts of diseases. Given
the Onto-DAGs, we can extract a unique Onto-Path P (i ) = {a (i )1 ,a

(i )
2 , . . . ,a

(i )
Matc
} for each drug i

and a unique Onto-PathP (d ) = {c (d )1 , c
(d )
2 , . . . , c

(d )
Micd
} for each diagnosisd , showing the hierarchical

concepts from general to specific categorization with a total of Matc or Micd levels. In addition,

we have the vector of side information for demographics of each patient o(u ) such as age/sex,

geographic region, and employment class/status, and for side effects of each drug e(i ) covering all
the possible drug adverse reactions such as allergy, high-temperature, and cardiac arrhythmias.
Task: Given (1) every patient’s prescription history and medical history from the first visit to

the latest visit at timeT ; (2) the Onto-Paths P (d ) and P (i ) for each diagnosis and drug; and (3) the

demographics o(u ) and side effects e(i ) features for each patient and drug, the goal is to recommend
the new prescription (i.e., the drugs have not been adopted in the patient’s history) for the next
visit atT + 1 of individual patients. Table 1 summarizes the important notations in our framework.
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Fig. 4. Framework overview. The model architecture consists of three major components. Green: Patients
are profiled by summarizing personal diagnosis history. Blue: Patients and drugs are interacted based on
hierarchical ontology embeddings. Grey: Model parameters are pre-trained for discriminative initialization.

3 METHODOLOGY

3.1 Framework Overview

Figure 4 shows the overview of OntoPath recommendation framework. Generally, the architecture
consists of three components: (1) a module for diagnosis history summarization will analyze the
sequence of diagnosis and aggregate them as unified patient embeddings. Specifically, by viewing
each diagnosis as hierarchical ontology concepts in a ICD-9 Onto-Path, we perform the history
summarization separately at different levels, from the root-level concepts to the leaf-level concepts.
Eventually, for each patient, we will obtain Micd (e.g., 4) hierarchical embeddings showing the
general-to-specific profile of patients; (2) a hierarchical patient-drug interactionmodulewill accept
the ontology-driven hierarchical embeddings of patients and drugs, and then will formulate their
level-to-level interactions to model the prescribing decisions comprehensively. Specifically, we use
a dual-RNNmodel to encode the ontology structures and use a co-attentionmechanism to facilitate
level-to-level patient-drug matching; and (3) a pre-training module will be conducted to learn a
self-supervised contrastive loss ahead of the final recommendation training. As a result, we will
obtain a discriminative initialization of model parameters such as patient/drug representations to
boost the final training of prescription prediction. Last, we compute the recommendation score
supervised by the label of prescriptions in training set, where positive prescriptions are marked 1
and negative prescriptions are marked 0.

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 99. Publication date: April 2023.
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Fig. 5. Details of OntoPath, an end-to-end prescription recommendation model. Three major model compo-
nents are highlighted by dashed box in different colors. Green box shows the diagnosis history summeriza-
tionmodule for patient profiling. Blue box indicates hierarchical patient-drug interactionmodule to facilitate
level-of-level co-attentions. Grey box illustrate the model pre-training module to refine the representation
initialization for the final recommender training.

In the following sections, we will present the details of the aforementioned model components
following the zoom-in illustration in Figure 5. First, we explain how to summarize the long diag-
nosis history hierarchically, with the incorporation of ICD-9 Onto-Paths using the self-attention
model – a Transformer network decoded by demographics. Second, we elaborate how to utilize
both the ICD-9 hierarchical embedding of patients and the ATC hierarchical embedding of
drugs to conduct level-to-level interactions using a dual-RNN co-attention network. Third, we
introduce how to optimize the model with a contrastive learning loss in a pre-training stage to
provide a premium initialization for boosting the learning of recommendation labels. Finally, we
demonstrate the final prediction layer, which learns the prescribing decision for each patient-drug
pair by considering two concerns: the therapeutic effectiveness (using the ingredient knowledge
of drugs) and the therapeutic safety (using the side-effect knowledge of drugs).

3.2 Profiling Patients by Summarizing Diagnosis History

In this section, we profile patients by summarizing the sequence of diagnosis in history. Specifi-
cally, we aim to learn the patient hierarchical embeddings, where each level aggregates the ICD-9
concepts of all diagnosis with a certain ontology granularity. The idea of learning diagnosis and
aggregating them as patient embedding is motivated by (1) diagnosis is an indispensable evidence
characterizing patient conditions before any treatment; and (2) diagnosis history provide us with
an natural way to introduce domain-specific concepts (ICD-9) into patient representation, where
each patient can be summarized in conditions at different levels of granularity using hierarchical
embeddings. To this end, as illustrated in green dashed box in Figure 5, we adopt an Transformer
network [40] to learn the sequence of diagnosis by processing their ontology concepts simulta-
neously at all granularity levels (encoding). Then, we use demographic information as the query
weights to aggregate the diagnosis sequence (decoding) to profile patient conditions with person-
alized awareness.

3.2.1 Encoding Diagnosis with Self-attention. Given a patient u’s diagnosis history

{d (u )
1 , . . . ,d

(u )
T
} where each diagnosis d has an Onto-Path P (d ) = {c (d )1 , . . . , c

(d )
Micd
} with a

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 99. Publication date: April 2023.
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length Micd, we can extract Micd (e.g., 4) ontology concept sequences from the diagnosis history
where each one focuses on a particular level of ICD-9 ontology. For example, given a sequence
of diagnosis in terms of ICD-9 codes [296.90, 784.0, 031.1], we can represent this sequence as four
sequences of ICD-9 concepts at different levels. For example, the first level will be [290-319, 780-799,
001-139], classifying the organ or system of the diagnosis; the second level [295-299, 780-789,
030-041] and the third level [296, 784, 031] will show more specific diagnosis categorization; the
last level of ICD-9 concepts are the diagnosis codes themselves.1 Formally, we can express the
hierarchical representation of diagnosis sequence as follows:

[
P (d1 ) P (d2 ) · · · P (dT )

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c (d1 )1 c (d2 )1 · · · c (dT )1

c (d1 )2 c (d2 )2 · · · c (dT )2

c (d1 )3 c (d2 )3 · · · c (dT )3

c (d1 )4 c (d2 )4 · · · c (dT )4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where P (d ) means the Onto-Path of the diagnosisd from 1 toT in the patient’s medical history. For

example, ICD Onto-Path of the first diagnosis d1 can be represented by four ICD concepts P (d1 ) =[
c (d1 )1 c (d1 )2 · · · c (d1 )4

]�
, therefore, a sequence of diagnosis can be represented hierarchically by

four rows of concepts in Equation (1).
Then, for each row of the hierarchical representation, we will process a sequence consisting

of T ICD-9 concepts c (d1 ), c (d2 ), . . . , c (dT ) (we omit the subscript for levels here). By having an
embedding for each ICD-9 concept, we denote the sequence of ICD-9 concepts as matrix C ′ ∈
R
T×K where each row v ′ct hosts the K-dimensional embedding of the ICD-9 concept at time t .

Since Transformer network does not have a recurrent setting, first we need to add the position
information pt tov ′ct :

pt,2i = sin(t/10, 0002i/K ),

pt,2i+1 = cos(t/10, 0002i/K ),
(2)

where t ∈ [0,T ) indicates the time step in diagnosis history and i indicates the dimension index
in K . By combining the ICD-9 concept embedding and sequential position embedding, we obtain

the input embeddings C ∈ RT×K where each rowvct = v
′
ct
× √K + pt .

Next, given the input embedding of ICD-9 concept sequence C , we aim to encode it with the
multi-head self-attention function of Transformer network. Suppose we have N heads attention,
every head of attention will independently encodes each ICD-9 concept into a subspace based on
the attentions given by the rest of ICD-9 concepts in the same sequence. Specifically, for the nth

single-head, we encodeC into three embeddings: queryQ (C )
n = CW

(qry )
n , keyK (C )

n = CW
(key )
n and

value V (C )
n = CW (val )

n , whereW
(qry )
n ,W

(key )
n ,W (val )

n ∈ RK×K/N are the trainable parameters for

the nth head of attention. In the end, we obtain A(C )
n ∈ RT×K/N as the encoding results of C with

the attention generated by a single head function:

A(C )
n = softmax 
�

Q (C )
n K (C )�

n√
d

�
V

(C )
n , (3)

where d = K/N means the dimension of each single head embedding of ICD-9 concepts.
With the concatenation of the embedding from all attention heads and a following fully con-

nected layer (multilayer perceptron (MLP)), we obtain the overall encoded results A(C ) , which

1Since most diagnosis codes in ICD-9 ontology are at the depth of 4 or 5, we uniformly have Micd = 4 for all Onto-Paths

of diagnosis code consisting of the three topmost categorical concepts and one leaf concept.
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99:10 Z. Yao et al.

has the same dimension with the inputC but each ICD-9 concept in the sequence has been evalu-
ated based on the attentions from the context concepts:

A(C ) = MLP
(
concat

(
A(C )

1 , . . . ,A
(C )
N

))
. (4)

3.2.2 Decoding Diagnosis with Demographic-attention. Given A(C ) the self-attention encoding
of every ICD-9 concept in sequence input C , we will summarize the entire sequence into a single
embedding reflecting the patient health conditions. We use the decoding function of Transformer

to aggregate the ICD-9 concepts in A(C ) . Particularly, we introduce the patient demographic fea-
tures to generate personalized attentions for aggregation. The idea is that, by different age, sex,
locations, socioeconomic status, and lifestyles, a particular patient should have different strat-
egy to assess health conditions (e.g., diabetes can be more dangerous for seniors), which would
largely influence the treatment to choose (e.g., treatment with less aggressive side effects). In de-

tail, we map the patient u’ demographic vector o (u ) ∈ R1×K to the query q (o)
n = o (u )W

′ (qry )
n ,

and map the formerly encoded diagnosis concepts in the sequence A(C ) to the key and the value:

K (A)
n = A(C )W

′ (key )
n and V (A)

n = A(C )W
′ (val )
n , whereW

′ (qry )
n ,W

′ (key )
n ,W

′ (val )
n ∈ RK×K/N stand for

the parameters of Transform decoder. Then, we get the aggregated embedding v
(u )
z,n ∈ R1×K/N of

the patient u’s health conditions summarized by the nth head of attentions:

v
(u )
z,n = softmax 
�

q (o)
n K (A)�

n√
d

�
V

(A)
n . (5)

By concatenating the resulting embeddings from all theN attention heads and process it through a

MLP layer, we get the patient embeddingv
(u )
z ∈ R1×K summarizing a sequence of ICD-9 concepts

at a particular ontology level:

v
(u )
z = MLP

(
concat

(
v
(u )
z,1 , . . . ,v

(u )
z,N

))
. (6)

For each patient u’s diagnosis history, we have four sequences of concepts to process because
of the length Micd = 4 of each ICD-9 Onto-Path. Eventually, by finishing the sequence of ICD-9

concepts at all levels, we obtain the hierarchical embedding of patient u as V (u )
z ∈ R4×K :

V (u )
z =

⎡⎢⎢⎢⎢⎢⎢⎣
v
(u )
z1

...

v
(u )
z4

⎤⎥⎥⎥⎥⎥⎥⎦
. (7)

3.3 Modeling Patient-Drug Interactions using Hierarchical Embeddings

Once we have obtained the hierarchical embedding of patients, we are ready to formulate the in-
teractions between patients and drugs. First, with the aforementioned ATC Onto-Path of drugs

P (i ) , we can hierarchically represent each drug as Matc (e.g., 5) levels of ATC concepts P (i ) =[
a (i )1 a (i )2 . . . a (i )5

]�
. Given each ATC concept an embedding, we formally represent the hier-

archical embedding of drug2 i as V (i )
a ∈ R5×K :

V (i )
a =

⎡⎢⎢⎢⎢⎢⎢⎣
v
(i )
a1

...

v
(i )
a5

⎤⎥⎥⎥⎥⎥⎥⎦
. (8)

2All drugs in ATC ontology have exactly five levels of ingredient and therapeutic concepts.
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We aim to find out how to match a patient V (u )
z with a drug V (i )

a so that the model can best
explain the observation of prescriptions. Therefore, given the hierarchical embeddings, we for-
mulate the interaction between the two sides through a co-attention mechanism across different
levels of ontology concepts. In this way, the patient-drug matching can be decomposed into a
series of hierarchical ontology concept matching, which can better address the final recommenda-
tion decisions. For example, when we are considering a drug for a certain purpose of treatment,
we start from the most general ATC classification concepts (e.g., anti-infectives), then we exam-
ine the more specific concepts (e.g., anti-bacterials) until we reach the exact active ingredient of
the drug (e.g., Penicillin). Similarly, when we are considering a patient with a key condition, we
check through the general-to-specific ICD-9 classification concepts to identify the problems, like
neoplasms → eoplasms of lymphatic tissue → acute lymphoid leukemia. With this motivation, we
propose to achieve the function in two steps: (1) encoding hierarchical embedding from general to
specific levels to preserve the ontology structure; and (2) modeling interactions between patient
and drug with a level-to-level co-attention mechanism. This component is illustrated by the blue
dashed box in Figure 5.

3.3.1 Encoding Ontology Structure with Recurrent Networks. To encode the embedding of con-

cepts in V (u )
z , V (i )

a with ontology structure information (e.g., parent to child relationship), we
adopt dual-RNN for patients and drugs to encode the ICD-9 and ATC concepts separately. Specif-

ically, for each patient-drug pair (u, i ), we have the hierarchical embeddings of patient V (u )
z =

{v (u )
z1 , . . . ,v

(u )
zMicd

} and drug V (i )
a = {v (i )

a1 , . . .v
(i )
aMatc

}, where Micd = 4, Matc = 5, and v
(u )
zm ,v

(i )
am ∈

R
1×K . We recurrently input the hierarchical embeddings in a top-to-bottom order to a RNN, so

that each level of ontology concepts will include the information of their ancestors.
We obtain the embedding of patient and drug information at each level m from two separate

RNN:

h (u )
zm = tanh(h (u )

zm−1W
(icd)

hh
+v

(u )
zmW

(icd)

xh
+ b(icd)),

h (i )
am = tanh(h (i )

am−1W
(atc)

hh
+v

(i )
amW

(atc)

xh
+ b(atc)),

(9)

where h (u )
zm ,h

(i )
am ∈ RK are the ontology structure encoded embeddings of patient u and drug i at

mth level.W (icd)

hh
,W (icd)

xh
,W (atc)

hh
,W (atc)

xh
∈ RK×K and b(icd),b(atc) ∈ R1×K are the network parameters

for both recurrent networks. It is worth noting that we use the vanilla RNN model to simplify the
illustration, more complex version of RNN like Gated Recurrent Unit (GRU) or Long Short-

term Memory (LSTM) can be adopted as well for better preserving the ontology structures in
this process. In this work, we used GRU in our experiments.

3.3.2 Inferring Level-to-Level Co-attention between Patients and Drugs. Through the dual-RNN
encoder, we obtain the final hierarchical embedding of patient and drug in terms of ontology con-
cepts and structures, next we start to model the mutual level-to-level interaction between them.
Having the health condition or the treatment function explained by multiple levels of patient or
drug embeddings, different levels should be emphasized when different patient-drug pairs are con-
sidered. Therefore, we aim to make the level-wise attention, which is dynamically adjusted to
different patient-drug examples, so that we can flexibly model the decisions of the final prescrip-
tion. Motivated by this intuition, we develop a co-attention network based on Reference [36] to
organize the level-to-level interaction between the patient and drug hierarchical embeddings.
Given the hierarchical embeddings output from Equation (9) in dual-RNN encoder: patient

H (u )
z ∈ RMicd×K and drug H (i )

a ∈ RMatc×K , where each row in H (u )
z or H (i )

a corresponds to the

mth level ontology concepts h (u )
zm or h (i )

am . We compute an affinity matrix G (u,i ) ∈ RMicd×Matc to
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accommodate the level-to-level concept relevance:

G (u,i ) = tanh(H (u )
z ΣH (i )�

a ), (10)

where G (u,i ) provide the co-attention alignment scores to the pairs of concepts, which belong to

the patientu and the drug i . For example,G (u,i )
3,4 shows the alignment score between the thrid-level

concept of patient and the fourth-level concept of drug. Σ ∈ RK×K is a matrix of parameters, for
coordinating the interactions across embedding dimensions. In this way, given G, we let either
patient u or drug i to mutually decide the attention coefficients for each other.

Next, we apply a max pooling function by taking the maximum value over columns (all levels

of drug) and rows (all levels of patient) ofG (u,i ) to obtain the overall alignment scores:

д(u ) = max
col

(G (u,i ) ) and д(i ) = max
row

(G (u,i ) ), (11)

where д(u ) ∈ RMicd ,д(i ) ∈ RMatc are the final alignment scores of each level for patient and drug,
respectively. During this process, sinceG depends on the specific concepts appearing in the patient
or the drug hierarchical embeddings, the final attention weights dynamically change according to
the actual patient-drug examples.

Finally, we calculate the attention weights α (u ) and α (i ) of each levelm in hierarchical embed-
dings using softmax function:

α (u )
m =

exp(д(u )m )
∑

1≤l ≤Micd
exp(д(u )

l
)
,

α (i )
m =

exp(д(i )m )
∑

1≤l ≤Matc
exp(д(i )

l
)
.

(12)

With the level-wise attention weights on the input hierarchical embeddings H (u )
z , H (u )

a , we

obtain the aggregation of hierarchical embeddings s (u ), s (i ) ∈ R1×K of patients and drugs:

s (u ) = α (u )�H (u )
z and s (i ) = α (i )�H (i )

a . (13)

3.4 Pre-training Model with Contrastive Learning

As shown by the grey dashed box in Figure 5, the level aggregated embedding s (u ) , s (i ) of patient
u and drug i obtained from in Equation (13) are the inputs for the prediction layer of recommen-
dation. Intuitively, we can simply use a supervised objective function such as a classification
or regression loss to approach the label of patient-drug observations and optimize the network
parameters. However, the direct optimization for the supervision label sometimes overlooks the

discriminativeness of representations such as s (u ) and s (i ) . For example, given a patient-drug

pair with a strong relevance that they should be recommended, the representation of s (u ) and s (i )

should also express a high intimacy in the semantic embedding space to reflect a good matching
score for this pair. To this end, we adopt a loss of contrastive learning [5] to pre-train the discrim-

inativeness of s (u ) and s (i ) , so that we can obtain a premium initialization of model parameters
prepared for the final recommendation label learning. Specifically, we use the contrastive loss to
distinguish if a sequence of diagnosis history and a drug prescription belong to the same patient’s

records. In our work, these two representations for contrasting are exactly s (u ) and s (i ) .

Formally, by randomly sampling a minibatch of N patient-drug pairs {(s (u )n , s
(i )
n )}Nn=1, we define

the contrastive loss as

Lpre-train = − 1

N

N∑

n=1

log
exp(sim(s (u )n , s

(i )
n )/τ )

∑N
k=1 exp(sim(s (u )n , s

(i )
k
)/τ )
, (14)
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ALGORITHM 1: The algorithm of OntoPath model.

Input: Patient u, drug i , diagnosis history {d (u )
1 , . . . ,d

(u )
T
}, ICD-9 Onto-Path P (d ) of diagnosis d ,

ATC Onto-Path of drug i , patient demographics o (u ) and drug side effects i (i ) .
Output: Recommendation score ŷ (u,i ) .

1: Initialize all parameters
2: while not reaching convergence criteria do

3: for each patient-drug instance y (u,i ) in a mini-batch do

4: # Diagnosis history summarization
5: Represent patient’s diagnosis history as 4 hierarchical ICD-9 concept sequences by

Equation (1)
6: for ICD-9 concept sequences at each ontology level do
7: Encode ICD-9 concepts in the sequence through self-attention by Equations (3), (4)
8: Decode the sequence of ICD-9 concepts with demographics by Equations (5), (6)
9: end for

10: # Hierarchical patient-drug interaction
11: Encode ontology structure of patient and drug with dual-RNN by Equation (9)
12: Level-to-level max-pooling co-attention between patient and drug by Equations

(10), (11), (12)
13: Obtain aggregation of hierarchical embedding for patient and drug by Equation (13)
14: end for

15: # Model optimization
16: if model pre-training then
17: Calculate contrastive loss and update parameters by Equation (14)
18: else

19: Calculate recommendation score in terms of effectiveness and safety by Equation (15)
20: Calculate cross-entropy loss and update parameters by Equation (16)
21: end if

22: end while

where n denotes the nth patient-drug pair in observation and N is the total number of pairs in the

minibatch. For the particular nth patient-drug observation, we have 1 positive sample (s (u )n , s
(i )
n ),

and N − 1 negative samples (s (u )n , s
(i )
k
) where k � n, because s (i )

k
comes from other patients. sim()

means the similarity function such as cosine similarity or dot product, τ is the hyperparameter for
softmax temperature.

3.5 Learning Final Patient-Drug Recommendation

After the pre-train stage, we prepare the inputs for the final recommendation label prediction. We

have the pre-trained embeddings of patients s (u ) versus the pre-trained embedding of drugs s (i )

and an additional vector e (i )—the side-effect features of drugs. The motivation is that we attempt
to model two perspectives of relevance between the patients and the drugs: (1) the effectiveness by

interacting patients with the therapeutic characteristics of drugs (s (i ) obtained from ATC ontology

concepts); and (2) the safety by interacting patients with the adverse reaction of drugs (e (i ) obtained
from side effects).
For each observed patient-drug pairs (labeled y = 1), we sample (e.g., Nns = 5) negative pairs

(labeledy = 0) by randomly replacing the drug with others.We use element-wise product to obtain
the embedding of effectiveness and safety relevance, and have it processed through a classification

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 99. Publication date: April 2023.



99:14 Z. Yao et al.

output layer to generate the classification probability:

ŷ (u,i ) = σsigmoid (w
(out )�concat((s (u ) 	 s (i ) ), (s (u ) 	 e (i ) ))), (15)

where 	 means the element-wise product of embeddings, σsigmoid (x ) = 1/(1 + e−x ) is the sigmoid

function, andw (out ) are the parameters for output layer.
Finally, we adopt the cross-entropy loss for optimizing over all the positive and negative patient-

drug pairs:

Lrec = −
∑

(u,i )

y (u,i ) log ŷ (u,i ) + (1 − y (u,i ) ) log(1 − ŷ (u,i ) ), (16)

where y (u,i ) is the positive or negative prescription label 1 or 0, and ŷ (u,i ) is the predicted proba-
bility of positive class.
Algorithm 1 shows the training process of recommendation model. Once the training is finished,

for each new patient-drug pair, we are able to generate its recommendation score ŷ (u,i ) . Therefore,
in the testing stage, given a patient and a list of candidate drugs for consideration, we rank the
drugs based on their recommendation scores in descending order. The top-k drug candidates will
be the recommendations for the patient.

4 EXPERIMENTS

In this section, we empirically evaluate the performance of the proposed OntoPath prescription
recommendation framework on a real-world medical claims dataset.

4.1 Data Description

We extract a large-scale depression patient cohort consisting of 37,669 patients during 2011 to 2014
from IBMMarketScan claims database3 [2]. Specifically, following the depression cohort designed
in Reference [19], patients are included if they had at least one exposure to an antidepressant med-
ication with at lease one diagnosis code for depression disease. For each patient, we retrieve the di-
agnosis and the prescriptions spanning the records of inpatient, outpatient, and facility visits since
1 year before the depression index date (i.e., patient’s first exposure to antidepression treatment)
until the latest visit when the patient was prescribed a new antidepressant drug.Wemerge all these
information from different sources of visits by patient ID and sort the information of each patient
by the date of service incurred. For prescription observations, since we aim to predict the new pre-
scriptions for the purpose of discovering treatment pathways for patients, we always consider the
first-time prescription of a drug as the effective patient-drug observation for each patient. In total,
we have 7,222 unique diagnosis and 875 unique drugs including 30 antidepressant drugs treating de-
pression observed in data. For the ontology information. We have the ICD-9 Onto-DAG consisting
of 8,248 diagnosis concepts, and the ATC Onto-DAG with 1,487 drug therapeutic concepts. More
ontology details are shown in Figure 6, where the portion of each unique concept is visualized and
their frequency of observation in the dataset is indicate by the color. Other than ontology, prescrip-
tion, and diagnosis information, we collect demographic feature of patients and side-effect features
of drugs. The demographic features including age and other information such as sex, employment
status, geographic location, and so on. Through feature binarization, we obtain the demographic
vector with 90 dimensions for each patient. For the side effect of drugs, we collect the Medical

Dictionary for Regulatory Activities Terminology (MedDRA) showing the possible adverse
reactions caused by drugs such as Allergic conditions, Body temperature conditions, and Cardiac

3https://www.ibm.com/products/marketscan-research-databases.
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Fig. 6. Distribution of unique concepts in ICD-9 and ATC ontologies of experimental dataset. Due to the
large number of concepts at lower levels, we only visualize the two topmost levels. The inner layer shows
the portion of concepts at the first level in terms of the number of unique diagnosis/drugs while the outer
layer shows the distribution at the second level. The color indicates the frequency of ontology concepts in
the dataset, which is normalized by the portion size (e.g., Observations per concept). Very small portions are
combined and shown as “Rst.”
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Table 2. Data Statistics

MarketScan

# of patients 37,669

# of drug codes 875

# of diagnosis codes 7,222

Age (mean ± sd) 45 ± 13

Sex (male/female) 10,275/27,394

# of patient-drug pairs 662,123

Avg drug per patient 17.58

Avg diagnosis per patient 25.87

# of nodes in ATC Onto-DAG 1,487

# of nodes in ICD Onto-DAG 8,248

arrhythmias. By counting all the unique side effects, we obtain the entire side-effect vector with
312 dimensions for each drug. Finally, by labeling the patient-drug pairs where 1 means observed
prescription and 0 means negative sampled prescription, we have 662,123 positive patient-drug
interactions and 10 times of them as negative interactions. More data statistics are shown in Table 2.

4.2 Baseline Methods

We compare the proposed OntoPath4 framework with baselines including both recommendation
methods and healthcare predictive methods.

• SVD++ [22]: an extended matrix factorization (MF) model based on singular value de-

composition (SVD).
• BPR [33]: a top-k recommendation framework using the Bayesian personalized ranking
optimization method for matrix factorization.
• DeepFM [14]: a deep learning model that models low- and high-order feature interactions
introduced by factorization machines
• NeuMF [17]: a deep learning model with a generalized matrix factorization (GMF) and
a MLP networks for modeling user-item interactions.
• Med2Vec [7]: a word2vec-based framework learning the embeddings of medical codes by
predicting the code in the neighbor visits using the current visit. Once we obtain the trained
diagnosis code embeddings, we train a recurrent neural network to predict the drug in the
next visit.
• RETAIN [9]: an interpretable medical code predictive model based on two cooperative re-
versed time recurrent neural networks. For each patient-drug pair, we use the history diag-
nosis codes as input for predict the drug for the next visit.
• GRAM [8]: a medical ontology-basedmodel for code prediction by supplementing diagnosis
codes with hierarchical information using graph-based attentions. History diagnosis code
along with ICD ontology is used for predicting next visit drugs.
• G-Bert [37]: a medication recommendation model that combines the Graph Neural Net-

work (GNN) for ontology structure learning andBidirectional EncoderRepresentations
from Transformers (BERT) for sequential medical code pre-training.

4The code is available at: https://github.com/zyao237/ontopath.
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• HAP [48]: a medical ontology embedding model that proposes to useHierarchical Atten-

tion Propagation (HAP) for propagating attention across the entire ontology structure,
learns medical concepts from not only ancestors but also descendants, siblings, and others.

4.3 Experimental Setting

In the training stage, we optimize the model with all the possible prescriptions (covering 875
unique drugs in total), to fully learn the medical characteristics of each patient by making model
sophisticated and discriminative. In the evaluation stage, to mimic the practical scenario where
finding next antidepressant treatment is the main target for depression treatment pathways, we
narrow down the recommendation candidates to all the available antidepressant drug (30 unique
drugs in total). To this end, we randomly sample 50% patients, to whom we adopt leave-one-out
evaluation by withholding their last prescribed antidepressant drugs for testing and returning all
the previous prescriptions for training. For each patient-drug prescription instance, we use the
patient’s history diagnosis before the prescription date, demographic and side-effect information,
as well as the Onto-Paths of diagnosis codes and drugs as input. With the predicted probabilities,
we rank all the candidate antidepressant drugs for each testing patient, and use top-k evaluation
metrics to validate the accuracy of drugs in recommendation lists.
For implementation, we empirically set the following hyperparameters: all embedding size as 64,

batch size as 256, negative sampling as 10, dropout as 0.2, initializer as normal, recurrent encoder
of hierarchical concepts as GRU, attention heads of Transformer for diagnosis summarization as
2, similarity function of contrastive loss for pre-training as dot product, classification optimizer
as SGD with 0.9 momentum, pre-training epoch as 5 then prescription recommendation training
until converge.

4.4 Evaluation Metrics

For each testing patient, we have the last antidepressant prescription as the ground truth and
the rest of the unprescribed drugs from the 30 total antidepressants as the negative candidates
(testing patients have 27 negative antidepressants on average). By ranking the ground truth and
negative antidepressants by predicted probabilities, we generate a top-k recommendation list for
each patient and evaluate it with the two following metrics. Finally, the overall performance is
reported by averaging the results over all the testing patients.

• Hit Ratio (HR@k): given the top-k list for antidepressant recommendations, we check if
the ground-truth drug is in the list. If yes, then we mark 1 for this patient and 0 otherwise.
• Normalized Discounted Cumulative Gain (NDCG@k): given the top-k list for antide-
pressant recommendations, we consider the rank position of the ground-truth drug in the
list. The score decrease as the ground truth’s rank goes lower (0 if out of ranking list).

4.5 Performance Comparisons

We present the performance comparisons between the proposed OntoPath and the baseline ap-
proaches on prescription recommendation in Table 3. Both Hit Ratio (HR) and Normalized

Discounted Cumulative Grain (NDCG) examine the ranking quality of drug recommendations.
Due to the high-stakes decisions of treatment planning for depression patients, we use relatively
short recommendation list for evaluation. For example, HR@1 means the average HR score over
all testing patients that if the top-1 recommending drug identifies the ground-truth antidepressant.
In total, we evaluate the recommendation list on five different sizes from 1 to 5.
Generally, we can see that the proposed approach OntoPath consistently outperforms other

baselines on all metrics in each top-k setting. Specifically, first we can see that classic MF approach
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Table 3. Performance Comparisons

Methods Hit Ratio NDCG

Top-k @1 @2 @3 @4 @5 @1 @2 @3 @4 @5

SVD++ 0.2331 0.3649 0.4674 0.5666 0.6593 0.2331 0.3139 0.3648 0.4077 0.4440

BPR 0.2288 0.3465 0.4534 0.5605 0.6619 0.2288 0.3012 0.3541 0.4001 0.4399

DeepFM 0.2338 0.3555 0.4503 0.5574 0.6597 0.2338 0.3082 0.3555 0.4014 0.4415

NeuMF 0.2350 0.3606 0.4545 0.5489 0.6356 0.2350 0.3120 0.3586 0.3990 0.4325

Med2Vec 0.2290 0.3500 0.4561 0.5652 0.6660 0.2290 0.3027 0.3556 0.4027 0.4422

RETAIN 0.2362 0.3611 0.4727 0.5720 0.6609 0.2362 0.3115 0.3673 0.4104 0.4451

GRAM 0.2597 0.3887 0.4878 0.5825 0.6673 0.2597 0.3371 0.3867 0.4278 0.4610

G-Bert 0.2479 0.3830 0.4914 0.5857 0.6718 0.2479 0.3296 0.3839 0.4246 0.4584

HAP 0.2591 0.3847 0.4938 0.5899 0.6727 0.2591 0.3346 0.3893 0.4310 0.4633

OntoPath 0.2671 0.3979 0.5092 0.6032 0.6834 0.2671 0.3460 0.4017 0.4425 0.4739

SVD++ give very competitive performance comparing to other recommendation methods (BPR,
DeepFM, NeuMF). Then, we see that the BPR model gives the worse performance. A potential
reason is that since we use implicit feedback (1 or 0) in this study, BPR can be constrained by using
the ranking order of each item pair as optimization objectives instead of classification losses. The
deep learning recommendation approaches (DeepFM, NeuMF) do not show significant advantages
comparing to traditional recommendation models. DeepFM modeling the higher order of feature
interaction has better performance than BPR but loses to SVD++. NeuMF performs better than
DeepFM but is still similar to SVD++. Finally, we have the medical predictive baselines (Med2Vec,
RETAIN, GRAM, G-Bert, HAP), which start to use either diagnosis or ontology structure as
supporting information. First, Med2Vec does not perform well as it is an unsupervised embedding
framework. The diagnosis codes are trained based on the co-occurrence with neighbor visits
instead of recommendation labels. Second, RETAIN achieves better overall performance than all
the previous baselines, showing that diagnosis history is a necessary evidence to train a drug
recommender, however it is not a personalized method and medical domain knowledge has not
been introduced. Third, GRAM and G-Bert make the similar performances and provide better
result than Med2Vec and RETAIN by starting to incorporate medical ontology information like
propagating ancestor concepts information in medical concept representation. Last, as an im-
proved model comparing to GRAM, HAP facilitates a more sophisticate hierarchical propagation
for ontology structure learning, and achieves the best overall performance except OntoPath.
By utilizing the entire neighborhood of target concepts through both bottom-up and top-down
rounds of propagation with attention, HAP shows similar or better results than GRAM and G-Bert
by generating comprehensive patient representation.

4.6 Ablation Study

To further validate the contribution of each component to the model, we conduct ablation study
by removing a component at a time for the three contributions we claim on OntoPath. Table 4
shows the HR and NDCG performances for the three ablation cases. For No Onto., we remove
the model components of using ontology information of ICD-9 and ATC, but we still have the
diagnosis sequence learning by Transformerwith patient demographic and drug side-effect feature
as auxiliary information. For No Diag., we remove the component consuming diagnosis code and
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Table 4. Ablation Study

Methods Hit Ratio NDCG

Top-k @1 @2 @3 @4 @5 @1 @2 @3 @4 @5

No Onto. 0.2435 0.3738 0.4834 0.5862 0.6708 0.2435 0.3224 0.3769 0.4216 0.4547

No Diag. 0.2299 0.3482 0.4602 0.5642 0.6608 0.2299 0.3027 0.3581 0.4030 0.4407

No Pre-tr. 0.2615 0.3881 0.4988 0.5943 0.6759 0.2615 0.3376 0.3932 0.4345 0.4665

Full 0.2671 0.3979 0.5092 0.6032 0.6834 0.2671 0.3460 0.4017 0.4425 0.4739

Table 5. Prescription Recommendation of ATC Concepts

Methods Hit Ratio NDCG

Top-k @1 @2 @3 @4 @5 @1 @2 @3 @4 @5

ATC lv-3 0.5842 0.9388 0.9442 0.9482 0.9524 0.5842 0.7057 0.7540 0.7810 0.7984

ATC lv-4 0.4033 0.6629 0.7938 0.8597 0.8928 0.4033 0.4611 0.4818 0.4901 0.4962

ATC lv-5 0.2671 0.3979 0.5092 0.6032 0.6834 0.2671 0.3460 0.4017 0.4425 0.4739

the auxiliary demographic information. Because of the removal of the entire diagnosis evidences,
ICD-9 ontology is unused, but ATC ontology is still working. Last, we remove the pre-training
stage as No Pre-tr. to show how effective the contrastive pre-training component is for enhancing
the performance of final patient-drug prescription prediction.
From the results, we observe that comprehensive diagnosis evidences are the first contributor

to drug recommender as No Diag. loses the largest margin of performance. Ontology information
is the second contributor as No Onto. shows the second largest decline on metrics. Last, although
pre-training does not enhance performance as large as the two previous components, it enhances
the best performance of recommender considering OntoPath without pre-training already outper-
forms all the baselines.

4.7 Recommendation of ATC Concepts

We examine the performance of recommending more general ATC concepts instead of specific
drugs. The idea is that two drugs may be different on the exact form of drug ingredients (at ATC
level 5), but they may have the same drug properties (e.g., therapeutic functions) by sharing the
same concepts at level 4 or level 3 of ATC ontology. It means that the predicted drugs, which share
part of therapeutic functions with the ground-truth drug, can still be effective for treatment to
some degree. Specifically, in this study, we use the higher level (e.g., level 3 or 4) ATC concepts
of drugs as the new ground truth for drug recommendation. As a result, the drugs sharing the
same ATC concept with the originally positive drug will be labeled positive as well. To validate
the effectiveness of recommendation of ATC concepts, Table 5 shows the prediction results of
recommending ATC concepts on level 3 and level 4 against the original evaluation on specific
drugs (i.e., ATC level 5). We can see that the recommendation of drugs on ATC level 4 (lv-4) has
increased the HR@1 from 0.2671 to 0.4033, which means that more recommended antidepressant
drugs may be potentially effective as well. If we examine the recommendations at ATC level 3
(lv-3), then the HR@2 approaches to 0.9388. It makes the drug recommender relatively reliable on
ATC level 3, but accordingly the drug effectiveness will be more uncertain, since the therapeutic
functions sharing at ATC level 3 cover much more drug concepts.
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Table 6. ICD-9 Codes with the Highest Attentions Learned for Predicting Example Antidepressant Drugs

Antidepressant Bupropion Trazodone Sertraline

Diagnosis with
the highest
attention (ICD-9)

Hypothyroidism (244.9)
Headache (784.0)
Insomnia (780.52)
Tobacco use disorder (305.1)
Myalgia and myositis (729.1)
Esophageal reflux (530.81)
Cough (7862)
Recur depr psych-severe (296.33)
Anxiety state (300.00)
Hyperlipidemia (272.4)
Malaise and fatigue (780.79)
Urin tract infection (599.0)
Vitamin D deficiency (268.9)
Nausea with vomiting (787.01)

Insomnia (780.52)
Hypothyroidism (244.9)
Headache (784.0)
Myalgia and myositis (729.1)
Tobacco use disorder (305.1)
Recur depr psych-severe (296.33)
Esophageal reflux (530.81)
Cough (786.2)
Anxiety state (300.00)
Nausea with vomiting (787.01)
Hyperlipidemia (272.4)
Urin tract infection (599.0)
Vitamin D deficiency (268.9)
Diarrhea (787.91)
Morbid obesity (278.01)

Hypothyroidism (244.9)
Headache (784.0)
Insomnia (780.52)
Cough (786.2)
Myalgia and myositis (729.1)
Tobacco use disorder (305.1)
Esophageal reflux (530.81)
Anxiety state (300.00)
Recur depr psych-severe (296.33)
Hyperlipidemia (272.4)
Urin tract infection (599.0)
Nausea with vomiting (787.01)
Pain in limb (729.5)
Acute bronchitis (466.0)

Antidepressant Olanzapine Chlordiazepoxide Fluvoxamine

Diagnosis with
the highest
attention (ICD-9)

Recur depr psych-severe (296.33)
Headache (784.0)
Insomnia (780.52)
Hypothyroidism (244.9)
Anxiety state (300.00)
Tobacco use disorder (305.1)
Psychosis (298.9)
Cough (786.2)
Esophageal reflux (530.81)
Opioid dependence (304.00)
Altered mental status (780.97)
Rec depr psych-psychotic (296.34)
Myalgia and myositis (729.1)

Irritable bowel syndrome (564.1)
Hypothyroidism (244.9)
Esophageal reflux (530.81)
Tobacco use disorder (305.1)
Insomnia (780.52)
Myalgia and myositis (729.1)
Abdmnal pain epigastric (789.06)
Nausea with vomiting (787.01)
Hyperlipidemia (272.4)
Diarrhea (787.91)
Recur depr psych-severe (296.33)
Anxiety state (300.00)
Abnormal loss of weight (783.21)
Sympt fem climact state (627.2)
Lump or mass in breast (611.72)

Recur depr psych-severe (296.33)
Headache (784.0)
Insomnia (780.52)
Cough (786.2)
Adjust dis w anxiety/dep (309.28)
Anxiety state (300.00)
Hypothyroidism (244.9)
Hyperlipidemia (272.4)
Lump or mass in breast (611.72)
Tobacco use disorder (305.1)
Fever (780.60)
Rec depr psych-psychotic (296.34)
Chronic pain (338.29)
Esophageal reflux (530.81)
Myalgia and myositis (729.1)

ICD-9 codes are ranked by the frequency of having the highest attentions in patients’ medical history.

4.8 Attention across Diagnosis Codes

One of the benefits of OntoPath is that the Transformer-based diagnosis learning module puts
attention to different diagnosis codes when predicting different drugs. We conduct an experiment
on inspecting the attention for history diagnosis to show the explainability of OntoPath. Specif-
ically, we retrieve all the prescription instances of a particular antidepressant, and extract the
Transformer decoding attention scores for combining history ICD-9 diagnosis codes. For each
prescription instance, we keep the top-3 ICD-9 codes with the highest attention scores, then
we rank the ICD-9 codes by their frequencies of being counted in top-3 attentions across all
the instances.
Table 6 shows the diagnosis codes that gain the highest attentions in the prediction of six fre-

quently used antidepressant drugs. The order of codes in each cell is ranked by frequencies from
high to low. Each diagnosis code ranking list is combined from the results of 2 Transformer at-
tention heads. Generally, we find that most of the diagnosis are relevant to the symptoms or
complications of depression or mental illness. First, Insomnia (780.52), Headache (784.0), and Hy-
pothyroidism (244.9) have been well-known symptoms of depression [21]. Moreover, Tobacco use
disorder (305.1) and Opioid dependence (304.00) have been strongly related to antidepressant (e.g.,
Chlordiazepoxide) treatment reflecting the common experience of smoking cessation and Opioid
withdrawal for depression patients [31]. Third, Sympt fem climact state (627.2) is highlighted as
antidepressants are frequently used for treating patients withmenopausal symptoms accompanied
by anxiety [29]. Last, Vitamin D deficiency (268.9) associated with seasonal affective disorder can
be an important factor causing depression [13].
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Fig. 7. Hierarchical attention distribution across ATC and ICD-9 ontology levels of randomly sampled patient-
drug instances ordered by patient age or by sex (1: male, 2: female).

4.9 Attention across Ontology Levels

The hierarchical interaction between the ontology concepts of patients and drugs is coordinated by
a co-attention max pooling network in OntoPath. Facing different patient-drug pairs, the attention
network automatically adjust the attention on different ontology levels for extracting the most
helpful information. To inspect how the model distributes attentions across different ontology
levels, we visualize the attentions of individual cases. Figure 7 shows the attention heatmaps across
both ATC levels and ICD-9 levels from 1,000 randomly sampled patient-drug pairs, where each
column shows a specific patient-drug interaction. In addition, we add demographic information
and rank the patients by two features: age and sex (1: male, 2: female). We can see that generally
ATC attentions are more concentrated on level 4 and level 5, occasionally on level 3. However,
ICD-9 attentions are more evenly distributed on all four levels. A possible reason is that each
level of patient hierarchical embedding is uniquely extracted from a sequence of ICD-9 ontology
concepts, which means that there are always unique information provided at each ontology level
of a patient’s diagnosis information.

4.10 Treatment Recommendations across Patient Subgroups

To further understand how the trained recommendation framework predicts treatments given
the heterogeneity of patient characteristics, we categorize the testing patients into multiple
subgroups and study the distribution of treatment recommendations, which lead to different
treatment pathways. Figures 8 and 9 show the patient subgroups based on either demographic
or phenotypic information, where the distribution of treatment recommendations are shown
in heatmaps. To better illustrate the transition patterns of prescription happened in treatment
pathways, we format the prescription recommendations as “last treatment → new treatment.”
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Fig. 8. The treatment pathways recommended for different patient subgroup by demographic information.

Fig. 9. The treatment pathways recommended for different patient subgroup by clinical phenotypes.

For example, color block at first row and first column in Figure 8 indicates the ratio of patients
who were on Escitalopram antidepressant treatment, are recommended to have Bupropion as the
new prescription, among all the depression patients in the subgroup of “younger than 35.” We
select the 25 most frequent prescription switch patterns resulted in top-2 recommendations in
OntoPath, rank them from left to right in descending order, and normalize the frequencies of all
the prescription recommendation as the ratio numbers between 0 and 1.
In Figure 8, we study the demographic patient subgroups in three categories—age, sex, and

region. First, for the four age subgroups, we can see that the mid-age groups “35 ≤ Age < 45” and
“45 ≤Age< 55” have a similar patterns of recommendation, but the young group “Age< 35” and the
elder group “Age ≥ 55” provide more distinction. For example, the transition pattern “Sertraline
→ Trazodone” and “Fluoxetine → Sertraline” are not very popular for the other age groups but
are top choices for young patients. This differentiation of prescription recommendation reflects
the model’s capacity in treatment personalization as the cause and progression of depression in
young and elder subgroups are significantly different than the other cohorts. Second, the two sex
groups shows the similar distribution in general. Minor difference exists in the popular treatment
pathways, such as “Escitalopram→ Bupropion.” Last, by categorizing patients in the U.S. by four
major regions, we observe some interesting patterns in the “west” and the “northeast” subgroups.
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Fig. 10. Attention distribution over historical diagnosis of patient case 1.

For example, we can see that the patients from the “west” region have a notable difference in
prescription recommendation comparing to the patients in other regions. For example, “Citalopram
→ Trazodone” is the most popular prescription switch pattern for west region patients but is not
for the others. This differentiation in recommendations reveals that the prescription differences
exist widely in observational EHR data by different areas, and suggests that the geolocation can
be an influential factor in building clinical predictive applications.
In Figure 9, we study how the prescription recommendation changes if a patient is from different

clinical phenotypic groups. To achieve this goal, we utilize theHealthcare Cost and Utilization

Project (HCUP) database from theClinical Classification Software (CCS) [12] to group ICD-9
codes into multiple homogeneous disease categories. We have ICD-9 codes of each testing patient
go through the single-level categorization in CCS, and label each patient with any involved cate-
gories. Among all the possible disease categories, we pick the 20 most frequent disease categories
as the highly relevant clinical phenotypes of depression patients. In details, we can see that patients
withMood disorders, Essential hypertension, andNervous system disorders tend to have different pre-
scription recommendations in their treatment pathways. For example, the prescription transition
patterns “Escitalopram→ Trazodone,” “Sertraline→ Trazodone,” and “Citalopram→ Trazodone” are
more heavily used in patients with Nervous system disorders comparing with other phenotypes.

4.11 Attention Behavior on Individual Patients

In this section, we visualize the attention across the diagnosis codes of individual patients, to
study how OntoPath learns the patient medical history through the tranformer-based attention
modeling. In Figures 10 and 11, the attention scores on historical diagnosis codes of two individual
patients are shown, who are randomly selected with as least 25 diagnosis codes and have hit the
ground-truth prescription with top-2 recommendations. In each figure, the x-axis shows the ICD-9
diagnosis codes sorted in ascending order by time, and the y-axis shows the single head attention
scores over each diagnosis in percentage.
Figure 10 shows the case study of a 49-year-old female patient who was on the antidepressant

drug Citalopram, is recommended switching the prescription to Bupropion. We can see that this
patient was having stress-related conditions (i.e., Adjustment dis w anxiety) in the past, which is
highlighted with the attention around 7%. Also, her underlying health conditions also show impact
on the prescribing decisions including the nervous system (i.e., Brachial neuritis), digestive system
(i.e., Esophageal reflux), respiratory system (i.e., Cough, Acute uri, Acute bronchitis), and female
genitourinary system (i.e., Vaginitis, Dysuria, Sympt fem climact state), which are highlighted with
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Fig. 11. Attention distribution over historical diagnosis of patient case 2.

relatively strong attentions as well. On the contrary, the irrelevant conditions such as the vision
system (i.e., Presbyopia, Chalazion) have not attracted a good amount of attention from OntoPath.

Figure 11 shows the case study of a 56-year-old female patient who was on the antidepressant
drug Amitriptyline, is recommended switching the prescription to Duloxetine. We can see that this
patient was having a history of substance abuse condition (i.e., Tobacco use disorder), which is usu-
ally correlated with depression onset and is highlighted with the attention around 17%. Besides
the major factor, her underlying health conditions concentrate on the pain and movement disor-
ders (i.e., Pain in limb, Cervical spinal stenosis, Extrapyramidal dis), female menopausal disorders
(i.e., Postmenopausal bleeding, Sympt fem climact state), and lipid metabolism disorders (i.e., Hy-
perlipidemia), which strongly influence the antidepressant recommendation through the attention
scores.

5 RELATEDWORK

Our work is related to two research areas: personalized recommender systems and healthcare
predictive analytics.

5.1 Recommender Systems

Recommender systems have been successfully applied in various web services to help users
find their interested information, such as E-commerce, social networks, and digital media.
Collaborative filtering (CF) techniques profile user interests from observed user-item inter-
actions without the requirement of domain knowledge, which have shown advantages of both
accuracy and serendipity in real-life applications (e.g., Netflix). Basic CF algorithms include
matrix factorization [23], Bayesian personalized ranking [33], factorization machines [32], and
their variants [22, 28]. Recent years have witnessed an increasing number of work on applying
deep learning techniques to recommender systems [49]. For example, NeuMF [17] combines
the generalized matrix factorization and feed-forward MLP network to model implicit feedback
data. DeepFM [14] derives an end-to-end model for capturing the low and high order feature
interactions in a neural network architecture. The latest progress in Recommender systems
involves employing graph data including ontology for enhancing recommendation accuracy. For
example, NGCF [42] formulates the user-item interactions in a bipartite graph structure, and
learns the embeddings by propagating information with high-order connectivity. KGNN-LS [41]
transforms the knowledge graph into a user-specific graph and applies a graph convolutional
network to compute the personalized embeddings.
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Meanwhile, with the increasing demands of session-based applications (e.g., Youtube, Tiktok),
sequential modeling with temporal consideration has been more and more introduced for next-
item recommendation. Traditional sequential modeling are primarily in probabilistic framework
such as Markov Decision Processes (MDPs) using transition probabilities [16, 34]. For exam-
ple, FPMC [34] presents a matrix factorization method to learn a personalized transition graphs
for each user to model sequential behaviors. In recently years, as deep learning techniques were
proven to be more effective and flexible for capturing the dynamic of sequential information, RNN
and its variants are increasingly used in literature [18, 20, 44, 51]. For example, Reference [18]
adapts a GRU model to session-based recommendation by introducing a pair-wise ranking loss
function. Reference [51] improves the LSTM network by equipping LSTM with time gates to ac-
commodate the time interval information into sequential user behavior modeling. Reference [20]
develops a GRU-based recommendation model with the incorporation of the Key-value Mem-

ory Network (KV-MN), which is capable of leveraging knowledge base information to profile
attribute-level user preferences.

5.2 Healthcare Predictive Analytics with Longitudinal Patient Records

In the domain of medical informatics, our work falls into the techniques that applies predictive
analytic models and use longitudinal patient records to improve the healthcare outcomes. With
the increasing availability of EHR and medical claims data, building predictive models from those
data has attracted significant attention from both academia and industry.
Predicting disease diagnosis has been an active research focus. For example, RETAIN [9],

Dipole [26], DoctorAI [6], and BRITS [4] present the RNN-based models with attention mecha-
nisms aiming to predict the ICD codes by learning the influential visits and the key diagnosis in
the past. GCT [11] proposes a Transformer graph neural network to learn the underlying struc-
ture of in-visit medical concepts by self-attention mechanism regularized by prior knowledge. Hi-
TANet [25] proposes a time-aware self-attention network to embed time information to recognize
the key timestamps in patient history. Besides the diagnosis code, the medication code is also a
frequent target for prediction using longitudinal patient records. For example, LEAP [50] formu-
lates the medication recommendation as a sequential prediction problem using a multi-instance
(diagnosis) multi-label (drugs) learning framework by mapping a set of diagnosis with a set of
drugs. G-Bert [37] proposes a step-by-step framework, which first uses graph neural networks to
embed the medical concepts within ontologies, then adopts BERT model to pre-train medical code
sequences, and finally builds a predictive model for medication recommendation. Gamenet [38]
aims to recommend medication combination by integrating the drug-drug interactions (DDI)

graph into the longitudinal patient record analysis. MedPath [46] learns a personalized knowl-

edge graph (PKG) containing the possible disease progression paths from observed symptoms to
target diseases, which are used to augment the EHR encoders for achieving better predictions. In
addition to the diagnosis and medication prediction, other adverse health events have been also
explored, such as hospital readmission prediction [15], mortality prediction [30], and so on.

Another topic that receives heavy research interests has been healthcare representation learn-
ing aiming to discriminatively describe patients for better facilitating disease progression model-
ing [1], and more downstream predictive tasks. For example, Med2Vec [7] learns the distributed
representations of diagnosis codes and visits using the co-occurrence of codes in same visits and
the sequential orders of visits in EHR data. Reference [43] proposes a continuous-time Markov
process-based model to learn disease progression of chronic diseases in an unsupervised man-
ner. Reference [24] uses temporal graphs to learn representation by capturing temporal relation-
ships of medical events in EHR sequences. Metacare++ [39] proposes a meta-learning framework
to address cold-start issues by developing a hierarchical patient subtyping strategy to bridge the
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modeling of infrequent patients and rare diseases. Reference [45] develops a GNN-based model
with time-aware meta-paths and self-attention mechanism to extract temporal semantics and in-
herent relations to learn an effective representation.
The last focus that has been extensively explored recently is to leverage domain knowledge

like hierarchical ontology concepts for driving reliable and interpretable models or representa-
tions. For example, GRAM [8], HAP [48], and MiME [10] develop graph-base attention models
that represent medical concepts with integration of structure information (e.g., ancestors) from
medical ontologies. KAME [27] proposes a future visit prediction model that explicitly makes use
of medical knowledge in the whole prediction process. Reference [47] proposes a domain knowl-

edge guided recurrent neural networks (DG-RNN) by introducing medical knowledge graph
into RNN architecture, as well as taking the irregular time intervals into account. G-Bert [37] and
HyperCore [3] belong to this category as well.
There are several factors distinguish our study from the literature. First, unlike the previous

medication recommendation work, which mostly adopts a drug code prediction task [37, 50], our
study adopts a classic recommender systems problem setting aiming to recommend new drugs
that have not been used by the patient before, instead of predicting the drugs that can be fre-
quently used and repeatable (e.g., refill) in doctor visits. Second, unlike most of the longitudinal
prediction work, which develop an universal model in a one-size-fits-all manner to predict for
all patients [9, 26], our study targets at developing personalized model by profiling patients with
unique representations, which is a critical step to achieve quality recommendations of prescrip-
tions. Last, comparing to previous work that focus on the medical concept representation [7, 48],
or adopt a stepwise framework for ontology andmedical history learning [37], our model is an end-
to-end trained framework integrating the learning of ontology information, longitudinal patient
records, and final drug recommendation in a unified process.

6 CONCLUSION

In this article, we developed a multi-evidence prescription recommendation framework to lever-
age medical ontology information, personal diagnosis history, and auxiliary demographic and side-
effect information, to discover effective drugs for chronic disease patients in treatment pathways.
Specifically, we first incorporated a customized Transformer network to learn the sequences of
ICD-9 diagnosis concepts extracted from patients’ personal diagnosis history and further summa-
rized the overall patient conditions using demographic information to achieve a comprehensive
patient profiling. Second, we developed a dual-RNN encoder for ontology structure processing and
a co-attention network to hierarchically model the level-to-level interactions for each patient-drug
interaction. By using domain-specific ICD-9 concepts and ATC concepts for representing patients
and drugs, respectively, wemanaged tomodel an in-depth patient-drug relevance to guide the deci-
sion making for prescription. Last, we exploited a contrastive loss to pre-train the patient and drug
discriminativeness, to prepare a premium model initialization for boosting the final prescription
predictive learning. We conducted extensive experiments on a real-world patient claims database
of a large-scale depression patient cohort. The results showed that OntoPath outperformed all the
baselines in terms of prescription recommendation performance, and the effectiveness of OntoPath
was further validated with model interpretation in case studies.
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