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Abstract—Disease staging aims to measure the development
of disease that uses clinical criteria to qualitatively classify the
course of illness. Staging is a critical task in many clinical
scenarios, for example, it could be used to guide the therapy
and care, predict the clinical outcomes, optimize the utilization
of resources, etc. Recently, data-driven disease staging using
massive observational data has attracted significant attentions in
literature. However, it is a technically challenging task not only
because it is an unsupervised job without professional guidance
as traditional ways do, but also it is crucial to generate clinically
meaningful explanations in addition to stage prediction. In this
work, we propose an interpretable deep learning framework,
named Deep Staging, for data-driven explainable disease staging.
The proposed approach could not only predict the disease
stages based on observational medical data, but also generate
clinically relevant characterizations of the disease stage outputs.
Experiments on a real-world healthcare dataset demonstrate the
effectiveness of the proposed framework.

Index Terms—Disease Staging, Interpretation, Deep Learning

I. INTRODUCTION

Disease Staging is a classification system that uses diag-
nostic, etiology and pathophysiology findings for measuring
the progression of a disease [12]. A proper staging analysis is
significantly helpful for a board range of healthcare scenarios,
such as designing clinical trials, evaluating the diagnostic
efficiency of physicians, assessing the quality of care, and
understanding the allocation of healthcare resources [14].

Traditionally, the staging of disease is developed by domain
experts based on professional knowledge and experiences
gained from clinical practices, and the developed stages are
often separated based on the values of one or a few gold
standard biomarkers. For example, the Global Initiative for
Chronic Obstructive Lung Disease (GOLD) developed a 4-
stage system for COPD based on Forced vital capacity (FVC)
and Forced expiratory volume (FEV-1) values [24]. A staging
system of Chronic Kidney Disease (CKD) was developed by
the National Kidney Foundation, which separates the disease
into five stages based on Estimated Glomerular Filtration Rate
(eGFR) value. The resulting staging systems are guaranteed to
produce clinically meaningful disease stages, and are straight
forward for clinical interpretation. However, such staging
practice usually requires long-term efforts to develop, and is
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based on the availability of widely acknowledged biomarkers.
For diseases without well-studied biomarkers, it is difficult
to develop a staging system. In addition, the staging efforts
are often disease-specific, and experiences are not easily
generalized from one disease to another.

Recent years have witnessed a rapid explosion of electronic
health records (EHR) including diagnosis, prescription, lab
test, and clinical notes. Such a wealth of clinical data has
motivated the development of data-driven methods for auto-
matic disease staging. Although not many data-driven methods
directly targeted at the disease staging problem, several works
have focused on a highly related topics. The Hidden Markov
Models (HMMs) and its extensions have been intensively
studied to learn discrete states for multiple diseases [31],
[28], [26]. However, one of the major drawbacks of HMM
is that the Markov property assumes the future state only
depends on the current state instead of the rich past history,
which limits its generalization in medical usage. Recently,
several deep learning methods have been developed to leverage
historical information when modeling disease progression,
such as the Recurrent Neural Network (RNN), DoctorAI [5],
RETAIN [6]. Deep learning models are, in general, more
capable of handling the complex medical history. However,
due to the “black box” issue, it is difficult to generate clinically
meaningful interpretations directly from the models.

In this article, we propose an interpretable deep learning
framework, named Deep Staging, towards the problem of data-
driven disease staging. The goal is to develop a generalized
staging methodology that can identify the multiple stages of
diseases and produce clinically meaningful interpretations in
a self-supervised way. Specifically, Deep Staging employs the
memory network [16] to analyze the vital long-term historical
information and generates the personalized stage transition
matrix based on the patient’s current and historical health
conditions. Moreover, Deep staging learns the representation
of the patient’s disease stages to interpret individual progres-
sion of illness. Experiment on the real-world EHR dataset
shows that Deep staging is advantageous to both distinguish
meaningful disease stages and generate corresponding medical
interpretations.



II. RELATED WORK

A. Disease Progression Modeling.

Disease progression modeling (DPM) is a critical topic
for caring chronic diseases such as Alzheimer’s Disease and
Diabetes [22]. A quality staging of patients helps to achieve
optimal outcomes through early diagnosis, intervention, as
well as predicting personalized pathological trajectories [1].
Many efforts have been put to use machine learning techniques
for modeling the progression of diseases using observational
data. For example, [13] derived a tree model to infer tumor
progression from a comparative genome hybridization dataset.
[19] developed a probabilistic Gaussian process model to
quantify the diagnostic uncertainty of severity on Alzheimer’s
Disease. [2] introduced a mixture model of trees to describe
evolutionary processes characterized by permanent genetic
changes. Due to the nature of modeling states, Hidden Markov
model (HMM) [31], [28], [26] and related latent variable
model [25] have attracted heavy interests for DPM. For
example, [32] proposed a continuous-time Markov process
based model to learn disease progression of chronic diseases
in an unsupervised manner. More work includes state space
based models [1] and group lasso based model [34].

B. Deep Learning on EHR Data.

The ubiquitous electronic health record (EHR) system has
created an unprecedented value for medical analytics with
large-scale, fine-grained, and standardized contexts of patients.
These data enabled deep learning techniques to learn more
sophisticated patterns and have shown impressive performance
on a variety of critical tasks. For diagnosis prediction, Doctor
AI [5] developed a two-layer recurrent neural network (RNN)
to predict the time and diagnosis of next visit using current his-
tory. Dipole [20] presented a bidirectional RNN with attention
mechanism aiming to learn the temporal patterns with both
the past and future visits. BRITS [3] proposed a bidirectional
RNN with the capability of accommodating missing value in
EHR time-series by imputing values as training variables for
improving prediction performance. For medical representation,
Med2Vec [6] learns the distributed embeddings of diagnosis
codes and visits using the co-occurrence of codes in the same
visit and the adjacency of visits in EHR history. GRAM
[7], MiME [9] introduced the hierarchical medical ontologies
to learn graph-based attention mechanism for medical con-
cept embedding. More recent work focus on incorporating
interpretabilty into healthcare modeling for delivering trans-
parent decision making. For example, RETAIN [8] makes
interpretable outcome prediction by adopting two RNNs to
learn the attentions of historical visit and in-visit diagnosis
respectively for aggregating visit embeddings as input for
prediction layer. GCT [10] proposed a Transformer [30] based
graph neural network to learn the underlying structure of in-
visit medical concepts by self-attention mechanism regularized
by prior knowledge.

III. METHODOLOGY

A. Problem Definition.

The studied problem is to generate the disease stage at
different timestamps to indicate the disease severity, given the
current clinical observations. Thus the problem is defined as:
Input: The clinical observation of i-th patient at t-th times-
tamp Xi

t , where Xi
t ∈ X and X is the records of all patients.

Output: The disease stage probability vector P i
t , where the

j-th element of P i
t is the probability of i-th patient at j-th

stage at t-th timestamp.
For notation clarity, we omit the patient indicator in the

following sections, i.e., the superscription i. Additionally, in
the following, we use the terminology “disease stage”, “stage”
and “state” exchangeably.

B. Framework Overview.

The framework of the proposed Deep Staging is shown in
figure 1. It contains three components: The memory controller,
the state transition and the outcome prediction. The memory
controller stores the long-term information. The state transition
component calculates the state probability based on the current
clinical observations and the retrieved information from the
memory controller. The outcome prediction component aims
to obtain a meaningful state representation. Specifically, when
a new observation Xt comes, the hidden state ht is generated
through the memory controller and retrieves and updates the
memory storage. Next, based on the combination of the hidden
state ht and the retrieved information, the transition matrix
Qt is obtained. The state probability Pt is calculated by
multiplying the transition matrix Qt and the state probability
in the last timestamp Pt−1. To better understand the learned
state, we further obtain the current observation representation
based on the hidden state and the state probability. Then, the
following tasks are applied: reconstruct the current observation
Xt; predict the observation of the next visit Xt+1, and predict
the time gap (∆t) between the current and the next visit. The
following sections describe each component in detail.

C. Memory Controller.

Long-term information is important for the disease staging
estimation, since, for chronic diseases, the long-term histor-
ical information affects the patient’s current condition. To
fully utilize the long-term information, the memory controller
should refresh the stored memory when new observations
come and retrieve useful information when estimating the
disease stage. To this end, we adopt the differentiable neural
computer(DNC)[16] as the memory network. The DNC mem-
ory network contains the following two parts: (1) controller
network; (2) the interaction with the external memory, includ-
ing memory reading and memory writing. In the following,
we will briefly describe the above two parts.

We first denote the external memory at timestamp t as Mt

with Mt ∈ RNslot×NM , where Nslot is the number of memory
slots and NM is the size of each slot.
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Fig. 1: Framework of Deep Staging Framework.

1) Controller Network:: The controller network receives
the current observation and the hidden state of the previous
timestamp. It then updates the hidden state of the network and
generates the inferface vector which are the parameters used
in the interaction with the external network. Specifically, the
GRU [4] cell is adopted to update the hidden state:

ht = fGRU(ht−1, Xt), (1)

where fGRU is the GRU cell, ht−1 is the hidden state in the
previous timestamp, and Xt is the current observation.

After obtaining the hidden state of the current timestamp,
the controller then generate the parameters responsible for the
interaction with the external memory:

{kl
t}Rl=1, {β

r,l
t }Rl=1, {β

w,l
t }Rl=1, rt,vt, β

write
t = fcon(ht), (2)

where fcon is the linear function, {kl
t}Rl=1 is the R reading

keys, and klt ∈ RNM , βr,l
t ∈ R and βw,l

t ∈ R are the reading
strength and writing strength separately, rt ∈ RNM and vt ∈
RNM are the erase vector and the write vector for memory
updating, βwrite is other memory updating parameters.

2) Memory Reading.: Memory Reading aims to retrieve
the information from the external memory to support the
downstream task. The memory reading is defined as:

Φl
t = wl

tMt, (3)

where l = 1, 2, · · · , R; wm
l is the reading weight based on

the similarity between the reading key and each memory slot,
with its s-th element defined as:

wl,s
t =

exp
(
foneplus(β

r,l
t )D(kl

t,M
s
t )
)

∑Nslot
j=1 exp

(
foneplus(β

r,l
t )D(kl

t,M
j
t )
) , (4)

where s = 1, 2, · · · , Nslot; Ms
t ∈ RNM is the s-th memory slot

in the external memory M; foneplus(·) is the one plus function,
which is defined as: foneplus(x) = 1+log(1+ex). The one plus
function ensures the range of the reading strength is within
[1,∞), and D(·, ·) is the cosine similarity function.

3) Memory Writing.: The external memory is updated by
erasing the non-related information and adding the important
information from the current observation. Mathematically, the
external memory is updates as:

Mt = (E−ww
t rt)�Mt−1 + ww

t vt, (5)

where E is the identity matrix, wt is the writing weight
calculated by the βwrite

t (more details about wt calculation,
see [16]), rt and vt are the erasing and writing vector obtained
from Eqn. (2).

D. State Transition.

The previous memory controller component extracts use-
ful information from the current observations and long-term
memory. With that extracted information, the state transition
component outputs the state probability vector to indicate



the disease severity at the current timestamp. The state tran-
sition component mimics the classical HMM model, which
multiplies the state probability at the previous timestamp
with the transition matrix. The difference between those two
models is that, in our proposed model, different patients at
different timestamps have their transition matrix, which pro-
vides personalized disease staging modeling. In the following
subsections, the transition matrix and state probability vector
will be presented in detail.

1) Transition Matrix Calculation.: For personalized disease
staging purposes, the transition matrix is updated based on the
information provided by the memory controller, when a new
timestamp comes. We assume there are total Ns disease stages.
Therefore, the transition matrix Qt ∈ RNs×Ns and its element
of i-th row and j-th column denotes the transition probability
of j-th state to the i-th state. The transition matrix is calculated
as:

Qft
t = softmaxNs

(fpos(fft(At ×Ht))), (6)

where
• Qft

t is the flattened transition matrix and Qft
t ∈ RN2

s ;
The element of i-th row and j-th column in Qt is the
((i− 1)×Ns + j)-th element in Qft

t .
• Ht is the concatenated matrix of the memory reading

vectors and the hidden state, and

Ht = [Φ1
t , · · · ,ΦR

t ,ht] ∈ R(R+1)×dh , (7)

where Φl
t is the vector retrieved by l-th reader from the

external memory which is obtained from Eqn. (3); ht

is the hidden state of the memory controller; R is the
number of the memory readers; dh is the dimension of
the hidden state, which is the same as the memory slot
size, i.e., dh = NM .

• At is the structured self-attention weight, and At ∈
RNa×(R+1). We adopt Na attentions in order to capture
different important parts of Ht [18]. Formally, At is
defined as: At = softmax(WA2 tanh(WA1H

′

t)), where
WA1 ∈ RNwa×dh and WA2 ∈ RNa×Nwa are the attention
parameters.

• fft(·) is the flatten function which flat the matrix At ×
Ht ∈ RNa×dh into R(Nadh).

• softmaxNs(·) denotes the softmax function applied to
every Ns elements.

• fWq
(·) denotes the fully-connected neural network with

Wq as its parameter.
The final transition matrix Qt is calculated by reshaping the
Qft

t into the Ns ×Ns matrix.
Attention Regularization. To reduce the redundancy of the
attention, as suggested in [18], the following regularization is
applied on the attention weight At”:

Latt =
∑
t

||A
′

tAt −E||2F , (8)

where E denotes the identity matrix and || · ||2F denotes the
Frobenius norm of a matrix.

2) State Probability Calculation.: After obtaining the tran-
sition matrix, the state probability vector is calculated the same
as the HMM model:

Pt = Qt × Pt−1, (9)

where Pt−1 ∈ RNs is the state probability at timestamp t− 1,
and Qt is the transition matrix defined in Eqn. (6).

E. Outcome Prediction.

To make the learned state meaningful, the state probabil-
ity vector, along with the hidden state, should support the
downstream tasks. We design the following three tasks: (1)
reconstruct the current observation; (2) predict the observation
at the next timestamp; (3) predict the time gap between the
current and the next observation.

To better support the downstream tasks, we first learn
the representation of the patient’s condition at the current
timestamp:

ext = frep ([WHHt, Pt];Wrep) , (10)

where Ht is the concatenated matrix of memory reading
and the hidden state defined in Eqn. (7); WH ∈ R1×(R+1);
[WHHt, Pt] ∈ Rdh+Ns is the concatenation of the input two
vectors; frep(·) denotes the neural network for representation
learning with Wrep as its parameter.

With the representation of the current condition, we further
adopt the neural network to do the reconstruction and the
prediction:

X̂t = frec(e
x
t ;Wrec),

X̂t+1 = fpred(ext ;Wpred),

∆̂t = ftp(ext ;Wtp),

(11)

where frec(·), frec(·), ftp are the neural works for current
observation reconstruction, next observation and time gap
prediction with Wrec, Wpred, and Wtp as their parameters,
respectively.

F. Objective Function.

The overall objective function of the proposed method is:

L = Ltask + λattLatt + λW ||W||2, (12)

where
• Ltask is the loss in the three tasks:

Ltask =
∑

Xt∈X

[
`ce(X̂t −Xt) + `ce(X̂t+1 −Xt+1)

+(∆̂t −∆t)
2
]
,

(13)

where X denotes the whole observation; `ce is the cross-
entropy loss; Xt and Xt+1 are ground-truth observation
at the current and next timestamp; ∆t is the ground-truth
time gap between the current and the next observation.

• Latt is the attention regularization defined in Eqn. (8).
• ||W||2 is the `2 regularization on all the neural network

parameters excluding the intercept term.
• λatt and λW are the hyper-parameters.



G. Implementation and Joint Optimization.

All the neural networks adopted in Deep Staging are stan-
dard feed-forward neural networks with Dropout [27] and ELU
activation function [11]. The Adam [17] is adopted to optimize
Eqn. (12).

IV. EXPERIMENTS

In this section, we experiment on the CKD dataset to vali-
date the following: (1) The proposed deep staging method has
comparable performance with the-state-of-the-art predictive
models in the prediction task. (2) The learned disease stages
are meaningful by qualitative analysis.

A. Experiment Setup.

1) Dataset: The cohort used in this study came from a
real-world longitudinal EHR database of over 300,000 patients
over the course of 4 years. The data were collected from
patients’ billing information. During a patient’s encounter
with the EHR system, a set of International Classification of
Diseases–Version 9 (ICD-9) codes were recorded to indicate
the medical conditions the patient had at that time point. Other
information, such as lab test results and medications, were
also recorded. We identified a cohort of 3890 CKD patients
based on the criterion that a patient was diagnosed with
CKD (i.e., the patients with ICD-9 diagnosis code 585.XX) at
least once during his observation period. For each identified
patient, his observations were segmented into non-overlapping
90-day windows using the first CKD diagnosis date as the
index date. Records before and after the index date are all
included. To ensure sufficient longitudinal information, we
only include patients with at least one year record. At last, the
cohort includes 3854 patients’ records and a total of 52, 313
aggregated visits. The ICD-9 diagnosis codes of per visit are
categorized according to the class listed in [33]. Table I lists
more statistics about the CKD dataset.

# of patients 3854
# of visits 52, 313
Avg. # of visits per patient 13.57
Max # of visits per patient 37

# of unique diagnosis codes 316
Avg. # of medical codes per visit 4.62
Max # of medical codes per visit 36

Max time gap 841
Min time gap 1
Median time gap 32

TABLE I: Statistics of CKD Dataset.

2) Baselines: The following state-of-the-art methods are
adopted to compare the performance on the prediction task:
(1) RNN: RNN with GRU cell [15] is adopted as the compari-
son method. We feed the observation at the current timestamp
into the GRU cell and predict the observation at the next
timestamp using the hidden state produced by GRU cell.
(2) Doctor AI [5]: Doctor AI is a predictive RNN model with
GRU cell in healthcare. It takes the concatenation of the multi-
hot observation vector and the duration since the last event as

the input, and predicts both the codes at the next visit and the
time gap between the current and the next visit. The Doctor
AI is initialized using the Skip=gram embeddings [21].
(3) Med2Vec [6]: Med2Vec efficiently learns the medical code
representation following the idea of Skip-gram [21]. It predicts
the diagnosis code appearance in the next timestamp based on
the representation of the current observation.
(4) RETAIN [8]: RETAIN is an interpretable RNN model with
a reverse-time attention mechanism, a visit-level and variable-
level attention model. The target label’s prediction can be
explained by the importance weight of variables generated
by the two-level attention mechanism. We change the final
prediction layer of RETAIN to the softmax layer so that it
can predict the appearance of multiple diagnosis codes.

3) Evaluation Metric: As suggested by [20], [8], we adopt
the visit-level recall@k as the evaluation metric, which is
defined as:

Recall@k =
# of correct codes ranked in the top k

# of codes in this visit
. (14)

The higher recall@k is, the better the performance. In this
experiment, we set k as 30, 20, 10.

4) Reproducibility: We randomly divide the dataset into
training, validation and testing set with a split ratio of
0.6/0.1/0.3. The validation set is used to select the best
parameters. We implement the Deep Staging with Pytorch
1.3.1 [23]. The state probability vector is initialized as that
in the beginning, all patients are in the stage 1. The batch size
is set as 50, the learning rate is 0.001, the number of iteration
is 100, and λW is set as 0.001. The external memory is set
as 4 memory slot with each slot has size 20 (i.e., Nslot = 4,
NM = 20). The number of state Ns is set as 4. Table II
summarizes the searching space of other hyper-parameters.

Hyper-parameter Range

λatt [0, 0.05, 0.1]
R [2, 3, 4]
Na [1, 2, 3]

# of hidden layers in the
[2, 3]neural network

dimension of each hidden layer [20, 50]
dimension of ext [30, 50, 100]

TABLE II: Hyper-parameter Searching Space

All baseline methods share the same hyper-parameters
search space with Deep Staging. The drop-out strategies with
a drop-out rate of 0.5 are applied to all approaches.

B. Results Analysis.

Table III reports the mean and standard deviation of the
recall@k over all the visits in the test set. The table shows
that our proposed deep staging model has comparable results
with RNN, Doctor AI, and RETAIN models on the prediction
task. Although Med2Vec has the highest recall@k value, it
lacks the interpretability. The results show that the proposed
framework has great potential because it has good predictive
performance, compared with the existing prediction model,



and reveals progression pathways to better understand the
diseases.

Methods Recall@30 Recall@20 Recall@10

Deep Staging 0.609± 0.314 0.524± 0.326 0.385± 0.319
RNN 0.602± 0.315 0.505± 0.330 0.378± 0.317

Doctor AI 0.599± 0.325 0.505± 0.335 0.374± 0.320
Med2Vec 0.707± 0.294 0.633± 0.316 0.518± 0.331
RETAIN 0.640± 0.313 0.555± 0.327 0.434± 0.329

TABLE III: Performance on CKD Dataset.

C. State Interpretation.

To uncover the inner meaning of the learned disease stages,
we show the probabilities of a group of ICD-9 codes in the
learned stages in Figure 2. From the figure, it is observed
that the distributions of some critical ICD-9 codes differ
in the four stages, indicating that the framework is capable
of separating different typical status along the progression
pathway. The probabilities also provide a clinical description
of each learned stage in terms of the most common diagnosis
in the corresponding stage.
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Fig. 2: ICD-9 Codes First Appearing Probability.

To further explore the capability of separating different
stages, we visualize the corresponding patient condition rep-
resentation (i.e., ext ) by t-SNE [29]. For each stage, 100 rep-
resentations are randomly selected, and decomposed. Figure 3
shows the results. The figure shows that within the same stage,
the representations are clustered, and between the different
stages, there is a clear difference in patients’ condition repre-
sentations. Those observations validate the ability to separate
different stages.

D. Case Study.

To better demonstrate that the proposed deep staging frame-
work can reflect the disease severeness, we provide a case

−20 −15 −10 −5 0 5 10 15

−20

−10

0

10
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30
Stage 1
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Fig. 3: Visualization of Patients’ Representation (ext ) at Dif-
ferent Stages.

study to show how the stage probability changes when crit-
ical diagnosis code appears. We randomly select one patient
within the group where each patent has 5 visits due to the
space limitation. Table IV shows the clinical event and the
corresponding stage probability at each visit. At first, the
patient is in stage 1. When the codes, 250, which is diabetes-
related code 401, which is hypertension-related code, appear,
the probability of stage 2 increases. In visit 5, the probability
of stage 3 increases with critical codes’ appearance: Chronic
renal failure 585. An interesting observation is that at visit
3 and visit 4, the patient has the same clinical events, and
their corresponding stage 2 probability is very similar. The
above observations illustrate that the disease stage probability
changes are consistent with the critical code appearances,
which validates the Deep Staging model’s ability to reveal
the disease severeness.

V. CONCLUSIONS

In healthcare, disease staging modeling is a vital and
challenging task. Many existing disease staging modeling
works either adopt the Hidden Markov Model or employ
deep learning techniques, such as recurrent neural networks
(RNNs). However, HMM-based models require the restrict
Markov property, and RNN based approaches either cannot
fully utilize the historical information or are unable to generate
meaningful clinical interpretations. In this paper, we propose
a novel framework, named Deep Staging, to overcome the
challenges of disease staging modeling. By employing the
memory network, Deep Staging can utilize the important
historical information stored in the external memory. The
personalized transition matrix learning provides the flexibility
for disease staging modeling. Experimental results on the CKD
dataset demonstrate that the proposed Deep Staging model
is capable of separating different typical disease status with
meaningful clinical descriptions.

VI. APPENDIX

Table V shows the meaning of the ICD9 codes mentioned
in Figure 2.



Visit Clinical Event Stage 1 Stage 2 Stage 3 Stage 4

1 367: Disorders of refraction and accommodation 0.785 0.215 0 0

2

250: Diabetes mellitus;

0.616 0.328 0.057 0
272: Disorders of lipoid metabolism;
401: Essential hypertension;
V76: Special screening for malignant neoplasms;

3
808: Fracture of pelvis; 401: See above;

0.483 0.374 0.130 0.013820: Fracture of neck of femur;
599: Other disorders of urethra and urinary tractk;

4 401: See above; 808: See above;
0.378 0.380 0.200 0.042

599: See above; 808: See above;

5

401: See above; 808: See above; 820: See above;

0.297 0.361 0.255 0.087

780: General symptoms;
410: Acute myocardial infarction;
E888: Accidental falls;
276: Disorders of fluid, electrolyte, and acid-base balance;
427: Cardiac dysrhythmias;
585: Chronic renal failure.

TABLE IV: The Clinical Events and The Stage Probability in Each Visit.

ICD9 Code Meaning

250 Diabetes mellitus
272 Disorders of lipoid metabolism
285 Other and unspecified anemias
401 Essential hypertension
585 Chronic renal failure
719 Other and unspecified disorders of joint
780 General symptoms
782 Symptoms involving skin and other integumentary tissue

786
Symptoms involving respiratory system and
other chest symptoms

TABLE V: ICD9 Code Meaning in Figure 2.
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