The Impact of Community Safety on House Ranking

Zijun Yao, Yanjie Fu, Bin Liu, Hui Xiong

Department of Management Science and Information System, Rutgers University

{zijun.yao, yanjie.fu, binben.liu, hxiong}@rutgers.edu

Community Safety of Houses

Community safety describes the degree that people live without fear of crime, such as burglary, robbery, or assault.

Community safety is a fundamental buying factor of houses.

Serious safety issues impact house values by (1) endangering residents, (2) degrading neighborhood, and (3) obstructing area development.

House Ranking

Designing ranking systems for residential houses (single family type),

Community Crime Evidence Mining (2)

Temporal correlation category: aiming to consider the temporal proximity among adjacent burglaries for revealing safety condition.

based on house values, for house investment decision support.

How to Know Local Safety Condition?

OFFENSE_ID: 2010200143220200 **OFFENSE_TYPE_ID:** burglary-residence-by-force **OCCURRENCE_DATE:** 2010-04-28 08:29:59 INCIDENT_ADDRESS: 2909 N IVANHOE ST, DENVER LATITUDE: 39.7586462 LONGITUDE: -104.9214312

A crime record.

Crime collection for houses.

Historical crime records: spatio-temporal crime incident data.

Crime influences: the collected crime information for a house should happened nearby.

How to Analyze Crimes for House Investment?

Residential forcible burglary (break-in): a widely spread crime type which directly impacts housing experiences.

Community crime evidence: the extracted crime information which infers the underlying community safety condition.

Safety-aware house ranking: a ranker which combines comprehensive house safety features to predict house values.

Near repeat series: consists of *n* adjacent crimes around a house and meets two conditions, (1) a minimum size threshold (e.g., 3 crime), and (2) a maximum interval threshold (e.g., 7 days).

Series Size Evidence (E3): $E_3(s) = |s|$ where $s = \{c_1, \dots, c_n\}$ is a series.

Series Length Evidence (E4): $E_4(s) = t_{c_n} - t_{c_1} + 1$ where t is timestamp.

Series Intensity Evidence (E5): $E_5(s) = \max_{2 \le n \le N} \{ \tau - (t_{c_n} - t_{c_{n-1}}) + 1 \}$.

A House Safety-Aware (HSA) Ranking Model

Optimizing both accuracy of house value prediction and consistency of house ranking prediction

 $Pr(\mathcal{O}|W,\Phi) = Pr(Y|W,\Phi)Pr(R|W,\Phi)$

where $\mathcal{O} = \{Y, R\}$ is the observed values and rankings, $\Phi = \{\sigma^2, b^2\}$ is the hyperparameters.

Prediction Accuracy $Pr(Y|W, \Phi) = \prod_{i=1}^{I} \mathcal{N}(y_i|f_i, \sigma^2)$ where $f_i = W^T X_i$

Ranking Consistency (pairwise: house is in order with value)

 $Pr(R|W, \Phi) = \prod_{i=1}^{I-1} \prod_{j=i+1}^{I} Pr(h_i \to h_j|W, \Phi)$

Incomparable houses: treating house pairs with different importances in

Characteristics	Description	
Neighborhood Characteristics		
Household	Average annual household income	
Income		
High	Ratio of residents with least bache-	
Educated	lors degree to residents who are at	
Ratio	least 25 years old	
Population	Percentage growth of population	
Growth	from 2000 to 2010	
Surrounding Characteristics		
School Rating	Average rating of the nearest public	
	high, middle and primary schools	
	(A school has rating $1 \text{ to } 5$)	
Point-of-	Number of diverse categorical tags	
Interest (POI)	extracted from all the POIs which	
Diversity	locate within d meters of the house	
Check-in	Average number of social network	
Density	check-in within d meters in every	
	workday after hours 6 PM to 6 AM	
Build Characteristics		
Land Area (in sq	Land Area (in sqft), Bedroom Number and Build Year	

Problem Definition

Given

Houses with corresponding location and square footage values. Historical burglary crimes with location, address and time. House profiles (characteristics of neighborhood, surrounding, build).

Objective

Ranking houses according to house value by the degree of safety concerns.

Three challenges

- 1. What crime evidences to mine for understanding comprehensive house safety situation?
- 2. How does the severity of community safety impact house values?
- 3. How to consider impact from factors other than safety in house ranking?

Community Crime Evidence Mining (1)

- **Crime severity category:** inferring the severity of a crime by the losses which are not disclosed in crime records.
- **Occurrence address evidence (E1):** use the appraisal of houses tracked by

pair-wise ranking optimization by using Euclidean based similarity [0,1] on house profile $D(h_i, h_i) = -\sqrt{\sum_{l=1}^{L} |p_l^i - p_l^j|^2}$

$$Pr(R|W,\Phi) = \prod_{i=1}^{I-1} \prod_{j=i+1}^{I} \left(\frac{1}{1 + exp(-(f_j - f_i))}\right)$$

Log Posterior

$$\mathcal{L}(W|Y, R, \sigma^2, b^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^{I} (y_i - f_i)^2 + \sum_{i=1}^{I-1} \sum_{j=i+1}^{I} D_{ij} ln \frac{1}{1 + exp(-(f_j - f_i))} - \frac{1}{2b^2} \sum_{m=1}^{M} w_m^2$$

Experimental Results

The Experimental Data: We use 3000 houses (single family type) with appraised values in 2015. 1131 forcible burglary crimes 2009 – 2014.

victimized address to assess the possible losses. $E_1(c) = Appraisal(add_c)$

Occurrence Time Evidence (E2): use the time slot during which the crime happened to assess the burglary losses.

Strong correlation between time of burglary and schedule

$$tropy(k) = -\sum_{i, P_{k,i} \neq 0} P_{k,i} \cdot log P_{k,i}$$
$$= |C_{k,i}|/|C_k|$$

Evaluation Metrics: NDCG@N, P@N, R@N, Kendall's Tau Coefficient.

Baseline Algorithms: LambdaMART, AdaRank, RankBoost, Coordinate Ascent, ListNet.

Conclusions

Extracting comprehensive community crime evidences (learned from historical crime data) to reveal underlying house safety conditions.

Incorporating community safety to enhance house ranking.

