

Dynamic Word Embeddings for Evolving Semantic Discovery

Zijun Yao (Rutgers University), Yifan Sun (Technicolor), Weicong Ding (Amazon),

- The learned embeddings across time may not be placed in the same latent space, because the cost functions for training are invariant to rotations: $\widehat{U}(t)\widehat{U}(t)^{T}=U(t)RR^{T}U(t)^{T}=U(t)U(t)^{T}$

Nikhil Rao (Amazon), Hui Xiong (Rutgers University)

{zijun.yao, hxiong}@rutgers.edu, ysun13@cs.ubc.ca, {20008005dwc, nikhilrao86}@gmail.com

Challenges

Alignment

- Splitting the data across time \rightarrow less training data per time slice. - Weakness of training separately across time \rightarrow some words may have very few or no occurrences.

- Making separate alignment (e.g., computing rotation matrix) problematic \rightarrow "bad" time slices contaminate other time slices.

- Alignment of embeddings across time is needed and challenging.

Sparsity

Main Novelty

- Learning the word embeddings across time jointly, thus obviating the need to solve a separate alignment problem.
- $\frac{1}{2}$ 1. This can be seen as an improvement over traditional, "single-time" methods such as word2vec.
- 2. Our experimental results suggest that enforcing alignment through

 $\lim_{t \to (t), W(t)} \frac{1}{2} \sum_{t=1}^I ||Y(t) - U(t)W(t)^T||_F^2 + \frac{Y}{2} \sum_{t=1}^I ||U(t) - W(t)||_F^2$ Solve using $+\frac{\lambda}{2}\sum_{t=1}^{T}\|U(t)\|_{F}^{2}+\frac{\tau}{2}\sum_{t=2}^{T}\|U(t-1)-U(t)\|_{F}^{2}$ **Block Coordinate Descent** $+\frac{\lambda}{2}\sum_{i=1}^{I}||W(t)||_F^2+\frac{\tau}{2}\sum_{i=1}^{I}||W(t-1)-W(t)||_F^2$. Enforces alignment $A = W(t)^T W(t) + (y + \lambda + 2\tau)I$, For each single time t solve $U(t)A = B$ (similarly for W) $B = Y(t)W(t) + \gamma W(t) + \tau (U(t-1) + U(t+1))$ $U(t)A = B$

regularization yields better results than two-step methods.

3. We share information across time slices: robust against data sparsity.

Conclusion

We proposed a model to learn time-aware word embeddings. Our proposed method simultaneously learns the embeddings and aligns them across time. We provided dynamic embeddings trained on the New York Times dataset, from which we discover evolving word semantics.

Dynamic Word Embedding

Our approach

Solving a composite problem with MF at each time point and a smoothing penalty across time.

No need to find a rotation matrix.

 Smoothing aligns embeddings in successive time slices and makes embeddings more robust to missing data.

Model

 $\min_{U(1),...,U(T)}$

Objective function.

Positive Pointwise mutual information (PPMI).

 $\frac{1}{2}\sum_{i=1}^{n}||Y(t)-U(t)U(t)^{T}||_{F}^{2}$

$$
\text{PPMI}(t, L)_{w, c} = \max\{\text{PMI}(\mathcal{D}_t, L)_{w, c}, 0\} := Y(t)
$$

$$
\text{PMI}(\mathcal{D}, L)_{w, c} = \log\left(\frac{\#(w, c) \cdot |\mathcal{D}|}{\#(w) \cdot \#(c)}\right)
$$

Time-aware word embedding $U(t)$.

Vocabulary size V , and total time slice T .

Experimental Study

 The New York Times: 99872 articles from 1990 to 2016. T=27 time slices (one for each year). 59 news section (e.g., Business, Technology, Sports). V= 20936 unique words after removing stop words and rare (<200) words.

Trajectory visualization

Equivalence searching

Semantic similarity

Robustness

Table 8: MRR and MP for alignment with every 3 years sub

MP@1

0.0255

0.0239

0.3306

0.3489

0.3522

0.3550

 0.0416

0.4854

0.5036

0.5024

0.5006

0.5488

0.5636

0.5612

Language and Words Evolve over Time

CONTEXTS EVOLVE president: Obama → Trump

MEANINGS EVOLVE apple: fruit \rightarrow technology

NEW WORDS ARISE twitter, iphone, mp3

Goal

Learn time-aware vector representations (embeddings) of words to account for word evolution.

> Smoothing term encourages the word embeddings to be aligned

PPMI factorization term for joint embedding over time

Alignment quality Query of equivalence words across time

Table 6: Mean Reciprocal Rank (MRR) and Mean Precision Table 7: Mean Reciprocal Rank (MRR) and Mean Precision (MP) for Testset 1 (MP) for Testset 2.

0.6191

0.6292

0.6310

0.6299

Optimization

$$
+\frac{\lambda}{2}\sum_{t=1}^T\|U(t)\|_F^2+\frac{\tau}{2}\sum_{t=2}^T\|U(t-1)-U(t)\|_F^2.
$$

 A key challenge: for large V and T , one might not be able to fit all the PPMI matrices in the memory.

A scalable solution: decomposing the objective across time to solve for U(t).

Baselines:

SW2V = Static word2vec TW2V = Transformed-Word2Vec [1] AW2V = Aligned-Word2Vec [2] DW2V = Proposed method

Clustering analysis using section labels as ground-truth

Table 4: Normailized Mutual Information (NMI).

Table 5: F-measure (F_β) .

Reference

[1] Kulkarni *et al*. "Statistically significant detection of linguistic change." WWW 2015 [2] Hamilton *et al*. "Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change." ACL 2016

 100%

 10%

 0.1%

 100%

 10%

 1%

0.1582

0.0409

 $|0.4222$

0.4394

0.4418

 0.1% 0.4427

sampling.

DW2V

Closest word to query (word, year) in different years

Popularity determination Vector norm: a more stable indicator of popularity than word frequency

obama, 2016

bush

bush

clinton

