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Abstract

It is well recognized that community safety which af-
fects people’s right to live without fear of crime has
considerable impacts on housing investments. Housing
investors can make more informed decisions if they are
fully aware of safety related factors. To this end, we
develop a safety-aware house ranking method by in-
corporating community safety into house assessment.
Specifically, we first propose a novel framework to infer
community safety level by mining community crime ev-
idences from rich spatio-temporal historical crime data.
Then we develop a ranking model which fuses multiply
community safety features to rank house value based on
the degree of community safety. Finally, we conduct a
comprehensive evaluation of the proposed method with
real-world crime and house data. The experimental re-
sults show that the proposed method substantially out-
performs the baseline methods for house ranking.

Keywords: Community safety, House ranking, Spatio-
temporal

1 Introduction

Community safety describes the degree that people live
without fear of crime, such as the risk of being victim-
ized in burglary, robbery, or assault. It has become a
fundamental buying factor of houses nowadays. Com-
munity safety issues can severely damage the value of a
house by: 1) endangering occupants and properties; 2)
degrading living and business environments, e.g., people
are less likely to rent for living or business; 3) obstruct-
ing the development of the area, e.g., new houses or
infrastructure are less likely to be built nearby. There-
fore, from the perspective of investors, it is requisite to
be aware of potential community safety issues.

Empirical studies have confirmed the importance
of community safety factors for house appraisals. For
example, a standard deviation increase in the local
density of property crime causes a 10% decrease in the
price of an average property in London [1]; the move-
in of a sex offender leads to a 2.3% fall in nearby
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housing prices in Hillsborough County, Florida [2].
These evidences show that the value of houses can be
significantly influenced by community safety issues.

Motivated by the above, it is appealing to provide a
tool for investors to rank house values based on the de-
gree of community safety. For investigating the impacts
of community safety on house values, historical crime
especially house burglary (also called break-in) is a valu-
able resource for the following reasons: 1) burglary di-
rectly threats houses, 2) burglary is commonly spread
in all locations, 3) burglary provides sufficient historical
cases for investigation. With rapid advances in position-
ing technology, data with fine-grained locations such as
coordinates of crime records is now available. This al-
lows us to appraise houses via their neighboring crimes
which make direct impacts.

Although there are a few studies which have inves-
tigated the impacts of crime on house appraisals [1–3],
they suffer from two limitations: 1) naive crime statis-
tics (e.g., counting crime cases), which can be improved
by sophisticated crime analysis to get in-depth under-
standing of community safety; 2) traditional appraisal
models (e.g., Hedonic regression) which include multiply
influencing aspects in house appraisal function, mask
the impacts of community safety. Unlike prior stud-
ies, we want to comprehensively learn local safety levels
by employing factors not limited to naive crime statis-
tics. Moreover, we want to solely focus on the influence
of community safety on house appraisal. Therefore, we
tackle two research challenges in this paper, Challenge
1: what crime analysis can be done to generate in-
depth understanding of community safety; Challenge
2: how to systematically model the impacts of com-
munity safety on house values without effects of other
aspects, such as neighborhood income level and rating
of nearby schools?

For Challenge 1, we identify two categories of dis-
criminative crime evidences that comprehensively de-
scribe community safety. The first category is based on
crime severity which focuses on property losses led by
different burglary crimes. Since available crime informa-
tion does not provide actual losses explicitly, we derive
evidences to infer the severity of crimes implicitly: oc-
currence address evidence and occurrence time evidence
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of crimes. The second category is based on temporal
correlation which considers the correlation of crimes to
learn community safety. The crime temporal correla-
tion reflects an important phenomenon called near re-
peat in criminology, which implies degraded community
safety and increased victimization risk [4,5]. Therefore,
we mine near repeat series to discover temporal corre-
lations of crimes around houses. Based on near repeat
series, we extract evidences to detect temporal corre-
lations: series size evidence, series length evidence and
series intensity evidence.

For Challenge 2, we propose a ranking model to
understand the impacts of community safety. Since
mostly investors want to compare houses rather than
knowing the exact value, ranking houses from the
perspective of community safety can help investors
differentiate low value houses from the other houses.
Therefore, we propose a house safety-aware (HSA)
ranker which combines all extracted community safety
features to rank houses according to house values. In
addition, we integrate distinctive house profile such
as neighborhood income, nearby school rating and
house build year to differentiate the comparability of
house pairs in pair-wise ranking objective for enhancing
ranking accuracy of community safety features. Last,
we optimize the ranking model by jointly preserving
the house ranking consistency and maximizing the value
prediction accuracy.

In summary, in this paper we strategically lever-
age rich spatio-temporal crime data for effective house
ranking. We highlight our key contributions as follows:

• We present an advanced crime analysis (e.g., crime
evidence mining) to comprehensively infer the com-
munity safety by exploiting historical crime data.

• We develop a safety-aware ranking model by in-
corporating the comparability of house pairs into
the optimization of pair-wise ranking objective, in
a way that we better model the impact of commu-
nity safety without the effects of other aspects, and
thereby enhance the ranking accuracy.

• We validate our method with real-world dataset.
Experiments shows that our proposed ranking
method not only provides better explanations in
safety impacts on house values, but also demon-
strates a substantial improvement in ranking accu-
racy compared with baseline ranking methods.

2 Problem Definition

Usually, when people use house values to indicate the
quality and benefits of a houses, they actually mean unit
values (e.g., values per square footage) since total values
are also affected by floor areas of houses. Moreover,
from the perspective of investors, ranking houses in

House
Crime

200 Meters

(a)

OFFENSE_ID:

OFFENSE_TYPE_ID:

OCCURRENCE_DATE:

INCIDENT_ADDRESS:

LATITUDE:

LONGITUDE: 

2010200143220200

burglary-residence-by-force

2010-04-28 08:29:59

2909 N IVANHOE ST, DENVER

39.7586462

-104.9214312

(b)

Figure 1: Example of (a) crime sequence of a house, (b)
a crime record.

terms of their quality and benefits, instead of predicting
absolute appraised values, is more needed for making
investment decisions. Therefore, to provide investors
with a tool to compare houses, we rank houses based
on unit values by taking community safety degrees into
account. In the rest of this paper, “house value” will be
used to represent the unit value of a house.

We are given a set of I houses H = {h1, h2, ..., hI}
where each house has a location (e.g., latitude and
longitude) and corresponding house values Y =
{y1, y2, ..., yI} where yi denotes the value per square
footage in dollar of house hi. We are also given profiles
of houses in H where each house has several house char-
acteristics such as neighborhood income, nearby school
rating and house build year. Last, we are given the com-
plete historical house burglary records of the area, each
burglary crime is denoted by < loc, add, t >, which has
a location loc, an address add and an occurrence times-
tamp t. The task is training a model to rank a testing
set of houses in an ascending order according to their
house value by exploiting historical burglary data. We
propose to accomplish the task with a two-step frame-
work: 1) extracting and aggregating community crime
evidences for learning the community safety of different
houses from historical crime data, 2) ranking houses by
incorporating the impacts of community safety.

3 Community Crime Evidence Extraction

In this section, we study how to extract and aggre-
gate community crime evidence for learning community
safety features of houses. Figure 1a shows an example
how we collect five historical crimes around house hi to
form its crime sequence Ci = {c1, c2, ..., c5}. To get the
crime sequence of a house, we collect all the historical
crimes which occurred within d meters (e.g., 200 me-
ters) of the house and order the crimes by occurrence
time from oldest to newest. We mine crime evidences for
house hi based on its specific crime sequence Ci. Figure
1b shows a sample of crime records. In the following, we
will extract crime evidences in two categories: 1) crime
severity, and 2) crime temporal correlation. Finally we
aggregate crime evidences by each evidence type to gen-
erate house-level community safety features.
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(b)

Figure 2: Hourly and daily number of burglaries in a
residential area during 2009-2014.

3.1 Category Based on Crime Severity. Crime
severity indicates the damage level made by a crime.
For burglary, it is usually determined by the property
losses in a crime. However, we do not have the explicit
description about the actual losses of valuables from
available crime information. Therefore, we attempt to
infer the severity of a burglary implicitly from other
crime information. To this end, we propose to mine two
evidences for a burglary to assess its severity.

3.1.1 Occurrence Address Evidence. Knowing
the detailed occurrence address of burglaries, we can
retrieve the appraisal of the victimized houses (e.g.,
265900 dollars). Intuitively, the loss led by a burglary
is proportional to the appraisal of the victimized house.
Higher appraisal usually means the victimized house has
more rooms or the house is more luxury. Either possibil-
ity gives burglars a higher chance to collect more valu-
ables. Based on this intuition, we can infer the possible
loss in a burglary crime by knowing the appraisal of the
victimized house via the burglary address. Therefore,
we propose the first type of evidence:

(3.1) E1(c) = Appraisal(addc),

where c is a burglary crime. addc is the occurrence
address of burglaries. Appraisal denotes the appraisal
of the victimized house located at burglary address.

3.1.2 Occurrence Time Evidence. The occur-
rence time of crimes is another information for infer-
ring the severity of a burglary. House burglary has a
unique character that burglars always have to make sure
there is no occupant at home to commit crimes. Since
the most common cause of people leaving home is for
work or school, the confidence for committing burglaries
should be strongly correlated to people’s working sched-
ule. In Figure 2a which shows the number of burglary
by every two hours in workdays, most of the burglaries
concentrate in the time range from 6:00 to 16:00 which
is the time people are usually out for work. In Figure
2b which shows the number of burglary by every day
in weeks, burglaries happened much more frequently in

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1

2

3

4

Cr
im

e

W e e k

(a) Low value house

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1

2

3

4

Cr
im

e

W e e k

(b) Normal value house

Figure 3: Weekly number of burglaries near two houses
during 2009-2010.

workday (Monday to Friday) compare to in weekend
(Saturday, Sunday). Based on this observation, during
different time slots, the general confidence of burglars
for committing a crime should be different.

We propose a time entropy to model the burglary
confidence of different time slots by analyzing how
many houses were victimized during the time slots.
Specifically, we define a time slot in two dimensions:
1) two hours of a day and 2) workday or weekend.
For example, a time slot can be 8:00 to 10:00 in every
workday. Then let k denotes a time slot, Ck,i is the
set of burglaries occurred in kth time slot at ith house,
and Ck is the set of all burglaries occurred in kth time
slot. The probability that a randomly picked burglary
occurred in kth time slot belongs to the ith house is
Pk,i = |Ck,i|/|Ck|. We define the Shannon entropy of
time slot k as follow:

(3.2) Entropy(k) = −
∑

i:Pk,i 6=0

Pk,i · logPk,i.

A higher time entropy implies a confident time slot
during which houses’ occupants are more possible to be
not at home. On the other hand, a lower time entropy
indicate a worse time slot during which occupants are
less possible to be not at home. Therefore, we infer
the severity of a burglary by the entropy of the time
slot it occurred in. If a burglary occurred during a
high entropy time slot, we consider it may result more
losses since burglars can take longer time for searching
valuables and have fewer chance to be discovered. We
propose the second type of evidence:

(3.3) E2(c) = Entropy(tsc),

where c is a burglary crime and tsc is the time slot
during which the burglary occurred.

3.2 Category Based on Temporal Correlation.
Given a crime sequence of a house, the temporal cor-
relation evidence aims to consider the temporal prox-
imity among burglaries. By analyzing temporal cor-
relation of crimes, we can infer the local community
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Figure 4: An example of near repeat series mining.

safety. Figure 3 shows the weekly statistics of burglary
happened within 400 meters of two houses respectively
during 2013-2014. Figure 3a shows the burglary near a
low value house, we can see that many burglaries tend
to cluster together temporally. On the contrary, Figure
3b shows burglary near a normal value house, we can
see that these crimes behave more independently. This
temporal correlation can be explained by near repeat
phenomenon in criminology research [4,5]. Usually, the
burglaries which repeatedly occurred in the same area
within short interval means that they are very likely to
be committed by the same burglars. Preference by re-
turning burglars implies worse community safety issues
and brings higher crime risks to the area [6]. Therefore,
we can expect that a stronger temporal correlation of
crimes leads to worse community safety of houses.

For capturing the temporal correlation, we propose
to mine near repeat series for houses. Basically, a near
repeat series is mined from the crime sequence of a house
and it is a set of crimes in which every crime happened
very shortly after the previous one except the first. A
house can have none to multiple near repeat series.
Formally, we define a near repeat series as follows:

DEFINITION 1. A near repeat series s of
a house hi consists of N adjacent crimes s =
{c1, c2, ..., cN} in which every crime cn belong to the
hi’s crime sequence: cn ∈ Ci and there is no other near
repeat series s′ makes that s ⊆ s′. Every near repeat
series meets two conditions: 1) the number of crimes
in s should be not less than a minimum size threshold
θ: |s| > θ, and 2) the interval between any two adja-
cent crimes should be not longer than a maximum time
threshold τ : ∀n ∈ [2, N ], tcn − tcn−1

6 τ where tc repre-
sents the timestamp of a crime c.

Figure 4 shows an example of mining near repeat
series. Given a crime sequence Ci = {c1, ..., c10} with
their occurrence date of a house hi, c1 is the oldest
crime while c10 is the latest one. Suppose we define
the maximum time threshold to be 7 days while the
minimum size threshold to be 3 crimes. We can find
the first near repeat series to be s1 = {c1, c2, c3} since
tc2 − tc1 = 2 and tc3 − tc2 = 6. Because tc4 − tc3 = 12,
repeat series s1 stops at c3. Although the interval
between c5 and c6 is less than 7 days, they can not find

c4 or c7 to reach the minimum size threshold. Last, from
c8 to c10, each of them has a less than 7 days interval
from its previous one, therefore we find the second near
repeat series s2 = {c7, c8, c9, c10} by qualified intervals
of adjacent crimes and qualified series size.

We propose three evidences based on near repeat
series to assess local community safety.

3.2.1 Series Size Evidence. Series size evidence
which measures the number of crimes in a near repeat
series, is a significant indicator for community safety
situation. For a house with less safety issues, the nearby
crimes should act independently and they are unlikely
to form large size near repeat series. If a near repeat
series has large size, there is high probability that the
area of house has serious safety issues. Therefore, we
propose the third evidence:

(3.4) E3(s) = |s|,

where s is a near repeat series consists of crimes.

3.2.2 Series Length Evidence. Series length evi-
dence measures the length of period a series lasts in or-
der to learn the community safety situation. As the near
repeat series lasts longer, it is more difficult for burglars
to commit repeat crime because of increasing police at-
tention. If near repeat series lasts long, it means that
the area is promising for burglars, therefore it indicates
a worse community safety situation for local houses. We
propose the forth evidence:

(3.5) E4(s) = tcN − tc1 + 1,

where tc1 and tcN represent the date of the first crime
c1 and the last crime cN of the near repeat series s.

3.2.3 Series Intensity Evidence. Series intensity
uses the shortest interval occurred in a near repeat series
to learn the community safety situation. An intensive
near repeat series means that at least two crimes of it
have very short interval thus shows a dangerous sign
of the area. For example, given two size-3 near repeat
series with similar length, the first series has the interval
{0−day, 7−day} while the second series has the interval
{3−day, 4−day}. The first series has a higher intensity
since the first two crimes of it occurred in a the same
day with 0-day interval. The second series has a lower
intensity since the shortest interval in the second series
is 3-day. Therefore, we propose the fifth evidence:

(3.6) E5(s) = max
2≤n≤N

{τ − (tcn − tcn−1
) + 1},

where tcn − tcn−1 represents the interval days between
crime cn and its previous adjacent crime cn−1 of series
s, τ represents the maximum time threshold.
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3.3 Evidence Aggregation. We aggregate evi-
dences by types for generating house-level community
safety features. As we introduced, for a house hi, we
have a crime sequence Ci = {c1, c2, ..., cKi

} and a set
of near repeat series Si = {s1, s2, ..., sJi}. The evi-
dence belongs to crime severity category (E1(c), E2(c))
is extracted by crime cases while the evidence belongs
to temporal correlation category (E3(s), E4(s), E5(s))
is extracted by near repeat series. Therefore, for a
house hi, we will have a community safety feature vector
Xi = {xi1, xi2, ..., xi5} as following:

(3.7) xim =


∑

c∈Ci

Em(c) if m ∈ (1, 2)∑
s∈Si

Em(s) if m ∈ (3, 4, 5)

4 A Safety-Aware House Ranking Model

In this section, we propose a House Safety-Aware (HSA)
model which ranks houses by incorporating the degrees
of community safety.

4.1 Model Specification. Let us define the input of
the model to be Xi, yi and Pi for a house hi, where Xi

denotes M-size vector of community safety features, yi
denotes the ground truth of house value and Pi denotes
the L-size vector of house profile characteristics. We
want to train a function fi = WTXi which formulates
the house value by having yi = fi + ε , where W
denotes the vector of weights for safety features and ε
denotes the error term which subjects to Gaussian noise
ε ∼ N (0, σ2). Thus, we have yi ∼ N (fi, σ

2).

4.2 Objective Function. We propose to jointly
model the accuracy of house value prediction and the
consistency of house ranking prediction in an objective
function. Let the parameter for estimation to be W ,
model hyperparameter to be Φ = {σ2, b2}, observed
ground truth to be O = {Y,R} where Y and R de-
note the value and rank of houses. Then we have the
posterior probability:

(4.8) Pr(W |O,Φ) = Pr(O|W,Φ)Pr(W |Φ).

First, let us address the probability of observed
data. We model Pr(O|W,Φ) as a joint probability of
house value prediction Pr(Y |W,Φ) and house ranking
prediction Pr(R|W,Φ). Modeling prediction accu-

racy, we use Pr(Y |W,Φ) =
∏I

i=1N (yi|fi, σ2) to ensure
value prediction accuracy of houses. Modeling rank-
ing consistency, we adopt a pair-wise probability to
ensure ranking correctness of all house pairs. Suppose
the I houses has already been ranked by house value
in ascending order. Given two index i, j which has

Table 1: Characteristics in house profile.

Characteristics Description

Neighborhood Characteristics

Household
Income

Average annual household income

High
Educated
Ratio

Ratio of residents with least bache-
lors degree to residents who are at
least 25 years old

Population
Growth

Percentage growth of population
from 2000 to 2010

Surrounding Characteristics

School Rating Average rating of the nearest public
high, middle and primary schools
(A school has rating 1 to 5)

Point-of-
Interest (POI)
Diversity

Number of diverse categorical tags
extracted from all the POIs which
locate within d meters of the house

Check-in
Density

Average number of social network
check-in within d meters in every
workday after hours 6 PM to 6 AM

Build Characteristics

Land Area (in sqft), Bedroom Number and Build Year

i < j, we should always have yi < yj and hi → hj which
means the rank of house hi is higher than the rank of
hj in ground truth. Therefore, we use Pr(R|W,Φ) =∏I−1

i=1

∏I
j=i+1 Pr(hi → hj |W,Φ) to represent the prob-

ability that hi is correctly ranked higher than hj by
model for all house pairs. We adopt Sigmoid function
to represent the probability of pair-wise ranking consis-
tency: Pr(hi → hj) = 1

1+exp(−(fj−fi)) .

Integrating house profile into ranking consis-
tency. House is a kind of distinctive property which has
various characteristics, such as the house profile shown
in Table 1. If two houses have too large differences in
house profile, their value difference does not help the
model to learn the impacts of community safety. For ex-
ample, if two houses have too different build year (e.g.,
1950 vs. 2010), then the impact of community safety on
house value may be overridden by the impact of build
year. Therefore, including the rank observation of dis-
similar house pair in optimization objective will jeop-
ardize the ranking prediction capacity of community
safety features. Based on this motivation, we propose
to weight house pairs differently by the comparability of
house pairs by exploiting profile data. Specifically, we
use characteristics in Table 1 to compute the similarity

between every house pair by Dij = −
√∑L

l=1|pil − p
j
l |

2
,

where i and j denote the house pair, pl denotes the lth
characteristic in profile vectors. Dij is normalized as
a real number between 0 and 1. Then, we incorporate
Dij as the comparability into the pair-wise probabil-
ity of ranking consistency. We have the new ranking
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consistency probability: Pr(hi → hj |W,Φ)
Dij , where

Dij is assigned as an exponent to corresponding house
pair’s ranking consistency probability. Benefit: when
the similarity Dij between hi and hj is high such as
the extreme 1, the impact of their ranking probability
Pr(hi → hj) will be fully preserved in objective func-
tion. On the other hand, when Dij is low such as the ex-
treme 0, the impact of Pr(hi → hj) will be fully blocked
outside of objective function. In this way, we differenti-
ate the importance of different house pairs for objective
function, thus we can better use community safety for
house ranking.

We present the final probability of observed data:

Pr(O|W,Φ) = Pr(Y |W,Φ)Pr(R|W,Φ)

=
I∏

i=1

N (yi|fi, σ2) ·
I−1∏
i=1

I∏
j=i+1

(
1

1 + exp(−(fj − fi))
)
Dij

.

(4.9)

Next, let us address the prior distribution of W
which is the last part in posterior distribution. We
model Pr(W |Φ) as Gaussian distribution with 0 mean,
where b2 represents the variance of parameter wm. We
have the prior distribution formally:

(4.10) Pr(W |Φ) =
M∏

m=1

N (wm|0, b2).

4.3 Parameter Estimation. Given the posterior
distribution in Equation 4.8, we want to find the optimal
W to maximize the probability. The log posterior
distribution is:

L(W |Y,R, σ2, b2) = − 1

2σ2

I∑
i=1

(yi − fi)2

+
I−1∑
i=1

I∑
j=i+1

Dij ln
1

1 + exp(−(fj − fi))
− 1

2b2

M∑
m=1

w2
m.

(4.11)

To maximize the log posterior, we utilize gradient

ascent method to update parameter wm by w
(t+1)
m =

w
(t)
m + α × ∂L

∂wm
, where α is the learning rate and ∂L

∂wm

is the derivatives according to Equation 4.11:

∂L
∂wm

=
1

σ2

I∑
i=1

(yi − fi)xim −
1

b2
wm

+
I−1∑
i=1

I∑
j=i+1

Dij
exp(−(fj − fi))

1 + exp(−(fj − fi))
(xjm − xim).

(4.12)

(a) (b) (c)

Figure 5: (a) Official neighborhoods, (b) Houses, (c)
Burglary crimes.

(a) (b)

Figure 6: (a) Value of ranked houses, (b) Relevance
score of ranked houses.

5 Experimental Results

In this section, we present a comprehensive experiment
to evaluate the proposed method on real-world dataset.

5.1 Experimental Data. All the data of houses and
crimes are collected from Denver Open Data Catalog [7].
For houses dataset, since house comparisons usually
happen in the same type with not very far distance, we
restrict the house type to only single family detached
home which is the major type in U.S., and collect 3000
houses evenly spread in a major residential region of
north Denver which consists of five adjacent official
neighborhoods as shown in Figure 5a, 5b. All the
house values are appraised in 2015. Figure 6a shows the
values of 3000 houses in ascending order. For ranking
purpose, we evenly split of range of house value into
10 levels and give the level of lower values the higher
relevance score. Therefore, as shown in Figure 6b,
the real house value yi in experiment is the relevance
score from 0 to 9 which shows how low a house value
is. For crime dataset, we collect residential forcible
burglaries happened in Denver during 2009 to 2014.
Totally, we find 1131 forcible burglary crimes which
are related to our collected houses as shown in Figure
5c. For house profiles, we collect neighborhood data
from demographic of 2010 & 2000 US Census, POIs
and check-in (9/2010 to 1/2011) data from Foursquare,
public school data from official public school rating [8].
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Figure 7: NDCG performance comparison.

5.2 Baseline Algorithms. To validate the effective-
ness of our proposed method, we compare it with several
traditional ranking algorithm: 1) LambdaMART [9],
which employs the Lambda function of LambdaRank
as gradients in the learning of Multiple Additive Re-
gression Trees (MART). 2) AdaRank [10], which plugs
the evaluation measures into the framework for boost-
ing optimization. 3) RankBoost [11], which adopts Ad-
aBoost [12] for the pair-wise classification. 4) Coordi-
nate Ascent [13], which applies coordinate ascent tech-
nique in unconstrained optimization. 5) ListNet [14],
which defines the loss function by the probability dis-
tribution on permutations.

We adopt RankLib [15] for baseline algorithm im-
plementation. For LambdaMART, we set number of
trees = 300, number of leaves = 10. For AdaRank, we
set number of round = 500, tolerance = 0.002. For
RankBoost, we set number of rounds = 300. For Coor-
dinate Ascent, we set number of random restarts = 5,
tolerance = 0.001. We randomly split 3000 houses to be
4:1 where 2400 for training set and 600 for testing set.

5.3 Evaluation Metrics

5.3.1 Normalized Discounted Cumulative Gain
(NDCG). NDCG is obtained from Discounted Cumu-
lative Gain (DCG) which measures the ranking qual-
ity by calculating the cumulative gain from the top
of the result list to the particular rank position K.
DCG@K = rel1 +

∑K
i=2

reli
log2 (i) where reli represents

the relevance score of the result at position i. Then we
compute Ideal DCG (IDCN) which represents the max-
imum possible DCG till position K by sorting the result
list by relevance. Last we obtain the normalized DCG:
NDCG@K = DCG@K

IDCG@K .

5.3.2 Kendall’s tau coefficient (Tau). Kendall’s
Tau coefficient measures the ranking quality by rank
correlation: the similarity of the orderings of houses
between predicted ranking list and ground truth ranking

Table 2: Performance of each algorithm.

Metrics Lamb
MART

Ada
Rank

Rank
Boost

Coor
Ascnt

List
Net

HSA

NDCG@5 0.8788 0.9023 0.7967 0.8015 0.7408 0.9160

NDCG@7 0.8537 0.8532 0.8026 0.7890 0.7664 0.9013

NDCG@10 0.8280 0.8590 0.8320 0.8003 0.7159 0.8666

NDCG@15 0.8309 0.8197 0.8113 0.8015 0.6733 0.8429

NDCG@25 0.8007 0.7993 0.8025 0.7859 0.6839 0.8457

Tau 0.2137 0.2733 0.1611 0.2326 0.2471 0.3146

list. Let (r̂i, ri) be the rank of house hi in predicted
ranking list and ground truth ranking list. Any pair of
houses (r̂i, ri) and (r̂j , rj) are concordant if both r̂i > r̂j
and ri > rj or if both r̂i < r̂j and ri < rj . They
are discordant, if r̂i > r̂j and ri < rj or if r̂i < r̂j
and ri > rj . We obtain the Kendall’s tau coefficient:

Tau = #concordant−#discordant
#concordant+#discordant .

5.3.3 Precision and Recall. Precision measure the
fraction of retrieved houses which are relevant. Recall
measure the fraction of relevant houses that are re-
trieved. In our case, we consider the low value house
with 7-9 relevance score as relevant, and consider other
house with 0-6 relevance score as irrelevant. In re-
trieved top K ranking houses, we calculate the preci-

sion by Precision@K =
|hK∩h≥7|
|hK | and the recall by

Recall@K =
|hK∩h≥7|
|h≥7| , where hK and h≥7 denote the

set of retrieved houses and the set of relevant houses.

5.4 Performance Evaluation on House Safety-
Aware (HSA) Ranking. We compare the perfor-
mance of proposed HSA and baseline algorithms with
the metrics of NDCG and Kendall’s tau coefficient. Fig-
ure 7 shows the NDCG@K of each algorithm from K=1
to K=50. Overall, we can see that HSA outperforms
all baselines. The improvement start to be obvious
since K = 15. Second, we notice that LambdaRank
and AdaRank which performance closely reach the sec-
ond best overall performance. Compared to the rest of
baseline algorithms, these two achieve obvious improve-
ment of NDCG performance when K is smaller than 10.
Moreover, RankBoost and Coordinate Ascent perform
similarly. They both do not perform well when K is
smaller than 15. Then their performance returns when
K grows large. Last, ListNet makes the lowest perfor-
mance, which is far behind other baseline algorithms.
Table 2 shows the numerical result of NDCG at small
K and Kendall’s Tau coefficient. On NDCG @5, @7,
@10, @15 and @25, HSA shows the consistent advan-
tage. On Kendall’s Tau coefficient, HSA achieves the
best performance of 0.3146, the second best is AdaRank
which gets 0.2733. Overall, HSA shows obvious advance
in both NDCG and Kendall’s Tau coefficient. In sum-
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(a) NDCG@K (b) Kendall’s Tau (c) Precision@K (d) Recall@K

Figure 8: Performance of different crime evidences.

(a) NDCG@K (b) Kendall’s Tau (c) Precision@K (d) Recall@K

Figure 9: Performance of different crime collection radius.

mary, the results shows that HSA model which incorpo-
rates house pairs comparability into ranking objective
optimization can effectively increase the performance of
house ranking with community safety.

5.5 Performance of Different Crime Evidences.
We compare the performance of every single evidence
type as well as two evidence combinations in NDCG,
Tau, Precision and Recall. In Figure 8, E1 (Occur-
rence address), E2 (Occurrence time), E3 (Series size),
E4 (Series length) and E5 (Series intensity) represent
the five evidence types we extract. The combination of
E1+E2 denotes the crime severity based category while
the combination of E3+E4+E5 denotes the temporal
correlation based category. First let us see the perfor-
mance of single evidences. From the perspective of top
K ranking measured by NDCG, E3 and E5 have the best
performance and E2 preforms well too. In Precision and
Recall, E5 performs the best. E2 and E3 perform well
too. For the overall ranking consistency by Kendall’s
Tau, E1 and E2 show the best performance, E5 also
does well. Then let us see the performance of evidence
combinations based on two evidence categories. The
crime severity based combination E1+E2 outperforms
the single evidence E1 or E2 in ranking quality of both
NDCG and Tau coefficient. The temporal correlation
based combination E3+E4+E5 outperforms the single
evidence E3, E4 or E5 in both of NDCG and Tau coeffi-
cient as well as Precision and Recall. Comparing E1+E2
with E3+E4+E5, we find that E3+E4+E5 consistently

provides better top K ranking quality. Generally, the
temporal correlation category evidences perform better
than crime severity category evidences in differentiating
low value houses via community safety conditions.

5.6 Performance of Different Crime Collection
Radius. Since we only consider the crimes which oc-
curred within a certain distance of a house as impactful
crimes, we want to explore what the proper distance is
for learning a house’s community safety. For example,
if the radius is 400M, we will learn community safety
by the crimes within 400 meter of a house. Figure 9
shows the performance on 5 different radius: 200M,
400M, 600M, 800M and 1000M in metrics of NDCG,
Tau, Precision and Recall. From Kendall’s Tau coeffi-
cient, we can see that radius in 400M, 600M and 800M
outperform other distance in the quality of overall rank-
ing. From NDCG, we can observe that 800M and 400M
perform the best but the performance of 600M falls.
One possible reason is that some houses can not cover
more burglaries when the radius increases because it
may cover non-residential blocks (e.g., square). When
the radius continuously increases to 800M, the circle
area overcomes the effects of non-residential blocks and
reaches sufficient crimes for safety assessments. There-
fore, we can have two insights from the results: 1) The
distance from 400M to 600M which is a walking distance
provides the most impactful crime for a house. 200M is
too short to collect sufficient crimes while 1000M overly
collects crime which do not generate real impacts. 2)
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Proper radius also depends on specific geographical sit-
uation which may disable some radius.

6 Related Work

This work can be grouped into three research categories.
The first category is the study of the appraisal and rank-
ing of real property. The works in [2,3] show that after
a registered sex offender moves into a neighborhood,
nearby housing prices would be declined in response.
The work in [1] reports that property crimes have a
significant negative impact on property price in Lon-
don area. The work in [16] concludes that decreases of
perceived security level in victimization survey is asso-
ciated with decreases of the real property valuation of
a district. The works in [17, 18] model the effects of
geographical dependencies and function diversities for
ranking estate investment values. The work in [19] ex-
plores the effects of people’s moving behaviors and on-
line reviews on real estate ranking.

The second category belongs to criminology re-
search. The work in [20] finds that there is a dramati-
cally enhanced risk of repeat burglaries for a house im-
mediately after an initial burglary happened. The work
in [5] shows that repeat victimization is more likely in
high-crime than in low-crime areas, and that the re-
committing by same offenders plays a key role in repeat
victimization. The works in [4, 21] show that the ele-
vated crime risk after the initial crime not only comes
to the victims itself but also spread to nearby areas.

The last category is the research in Learning-to-
rank (LTR) algorithm. There are three categories of
LTR algorithm, point-wise ranking directly predicts the
relevance degree of a document, such as [22] which
adopts regression to solve the problem of ranking. Pair-
wise ranking output the relative order for a pair of
two documents. The work in [23] applies the SVM
technique to classify orders for document pairs. Last,
list-wise ranking model the entire ranking of a whole set
of documents. The work in [14] defines the loss function
by using the probability distribution on permutations.

7 Conclusion

In this paper, we presented a systematic study on rank-
ing house by leveraging spatio-temporal crime data.
Specifically, we first extracted community crime evi-
dences in two categories: crime severity and crime tem-
poral correlation. Moreover we proposed effective ap-
proach to ranking houses based on value by incorpo-
rating the house specific features of community safety.
Also, we integrated the impacts of popular house pro-
file in optimization to enhance the proposed ranking
model. Finally, extensive experimental results on real-
world crime and house data validated the performance
of the proposed method.
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